
A Distributed Multimedia Data Management
over the Grid

Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Chen

Abstract In this chapter, we propose a distributed multimedia data management ar-
chitecture, which can efficiently store and retrieve multimedia data across several
nodes of a Grid environment. The main components of the proposed system com-
prises of a distributed multidimensional index structure, a distributed query man-
ager handling content-based information retrievals and a load balancing technology.
The proposed distributed query manager embeds the high-level semantic relation-
ships among the multimedia data objects into the k-NN based similarity search, thus
bridging the semantic gap and increasing the relevance of query results manifold.
This research has two major usabilities. First, it models a web environment where
each node of the Grid can be considered as the nodes or sources of data in the
world-wide-web. This should help to investigate and understand the challenges and
requirements of future search paradigms based on content of multimedia data rather
than on text annotations, as used currently. Second, it provides the foundation to
develop content-based information retrievals as a possible Grid service. Extensive
experiments were conducted with varied data sizes and different number of distri-
bution nodes. Encouraging results are obtained that makes this endeavor a potential
architecture to manage complex multimedia data over a distributed environment.

1 Introduction

Grid computing can be described as a form of distributed computing which com-
bines the power of several computing nodes of varied computing resources to exe-
cute one or more tasks collaboratively in a seamless and transparent manner without

Kasturi Chatterjee1 , S. Masoud Sadjadi1, and Shu-Ching Chen1,2
1School of Computing and Information Sciences, Florida International University, Miami, FL,
U.S.A.
2State Key Laboratory of Software Engineering, Wuhan University, 430072, China.
e-mail: kchat001@cs.fiu.edu, sadjadi@cs.fiu.edu, chens@cs.fiu.edu

1

2 Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Chen

any central control [12][13][14]. In the recent years, the popularity of Grid Comput-
ing has enabled experts from different scientific backgrounds to use its high comput-
ing power to execute computation intensive applications. Often these applications
are data intensive like in protein folding, semiconductor manufacturing, and DNA
sequence analysis. Such applications need a well defined data management within
the distributed Grid environment.

There are basically two different approaches of designing a Data Grid: namely
management of static data and supporting dynamic data sets. The first approach is
also called Level 0 Data Grid [7]. It does not address data management issues as
updates, transactions, integrations, etc., which are typical to data that changes with
time. Basically, it addresses two fundamental issues: data access and meta data ac-
cess. The data access provides managing, accessing and transferring data that is
stored in the storage (typically as file systems). It essentially implements a storage
system abstraction, by which the applications need not be aware of the specific low-
level policies utilized in the data management. The meta-data service provides a
mechanism for presenting and using the information about the data (stored in the
files). Different categories of meta data can be used: namely content information
of the file, data creation environment, and application-specific information related
to the data. Apart from these two basic functionalities, Level 0 Data Grid provides
some added services such as authorization and authentication, resource allocation,
and performance evaluation. Level 1 [26] data Grids are for dynamic data sets and
accommodates methods such as access, management, transaction and synchroniza-
tion of data. To develop data Grids comparable in performance and robustness to the
traditional data management techniques, features including indexing, querying, and
transaction management. should be provided effectively. These features should be
incorporated seamlessly along with features which are typical to Grid environment
such as data regionalization, data synchronization, and load balancing.

Multimedia data is more complicated than traditional text-based data both in
representations as well as in access mechanisms involved during their retrievals.
Multimedia data is typically represented as multidimensional vectors of low-level
features (e.g., colors, textures, objects, etc.). In addition to the low-level informa-
tion contained in them, they have high-level semantic information attached. The re-
lationship between the low-level features and the high-level semantic information is
quite fuzzy and gives rise to the semantic gap issue. This is a typical problem area in
all types of multimedia data retrievals and affects the relevance of query results neg-
atively. Thus, any data management frameworks for multimedia data should be able
to accommodate both these atypical characteristics of multimedia data: namely the
multidimensional representation and the semantic information. Though multimedia
data is more complex than traditional text-based data; they are popular media of
communication due to their expressiveness. Thus, their presence and requirements
in today’s popular applications cannot be avoided. Hence, to enhance the usability
of Grid environment, the underlying data Grid should be able to manage multi-
media data effectively as well. But, since multimedia data is quite different from
traditional text-based data, their management frameworks should also be different.
For example, the index structure for multimedia data should be multidimensional as

A Distributed Multimedia Data Management over the Grid 3

opposed to the popular single dimensional index structures of text-based data. Addi-
tionally, since their information needs are different, the retrieval methodologies that
the database system should support are different too. All these calls for a dedicated
multimedia data management framework over the distributed environment of a Grid
architecture.

The Internet can be considered as a distributed environment and can be simu-
lated with a Grid architecture. Several popular applications such as social networks,
collaborative tools, and search use multimedia data heavily. Thus a multimedia data
management architecture for Grid environment can be considered as a prototype for
investigating multimedia data management in the Internet. One specific application
which can benefit immediately from such layout is multimedia search. Currently,
the multimedia search is based on keywords or annotations. Such search paradigm
limits the relevance of the search results manifold. Firstly, a single multimedia ob-
ject (an image or a video) can have multiple high-level semantic meaning attached
to it as the semantics vary with the perspective of the user who labels it. Thus, one
keyword will be unable to capture the different aspects of the users’ perspectives.
Secondly, the multimedia data is represented and stored as multidimensional feature
vectors. Thus, for a keyword-based search, during retrieving them from the under-
lying storage, a relationship need to be established between the low-level features
and the high-level semantics (keywords with which they are expressed). This rela-
tionship is often fuzzy and there exist a gap between them, called the semantic gap.
This affects the relevance of the query results and degrades the quality of the search
results. The best approach is to introduce a content-based search paradigm for mul-
timedia data which will be distributed over the Internet. Thus, a successful layout
of a multimedia data management and content-based retrieval system over the Grid
will be a potential solution for solving the problem of managing multimedia data
over the Internet.

In this chapter, we lay down the framework for distributed multimedia data man-
agement over a Grid Computing environment. It comprises of two categories of
components: firstly, components related to the multimedia data management like
index structure, and query manager; and secondly, components related to the Grid
architecture like automatic load balancing techniques, and replica management poli-
cies. These two sets of components should seamlessly communicate with one an-
other so that the overall goal of achieving multimedia data management over a
distributed Grid environment is achieved. A database management system is pri-
marily composed of two major blocks: a robust storage and efficient well-rounded
retrieval mechanisms. An index structure is the backbone of both and is the use-
ful connection between them. Traditional single dimensional index structures such
as B-Tree [1] cannot handle the multidimensional feature vectors that are used to
represent the multimedia data. Though there are numerous multidimensional index
structures such as those in [8][3] that can handle the multidimensional aspect of
the multimedia data but they lack the capability to handle the high-level semantic
relationships efficiently. In our earlier works, we proposed multidimensional index
structures including AH-Tree [4], HAH-Tree [5] and GeM-Tree [6] designed for
efficient management of multimedia data comprising of images and videos. In this

4 Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Chen

chapter, we extend the usability of multimedia index structures in a distributed Grid
environment. We propose a distributed query management technique which em-
beds a content-based similarity search into a k-NN based algorithm in a distributed
environment. Additionally, we introduce the high-level semantic relationship into
the index structure and the subsequent query processing with a stochastic construct
called Markov Model Mediator [25]. We also introduce Grid specific components
including a load balancing manager and semantic relationships manager between
Grid nodes to enable the proposed multimedia database framework to be used suc-
cessfully in a Grid environment. Extensive experiments with varied data load and
computation nodes are performed. The promising results demonstrate the usability
of the proposed architecture and its potential extensibility.

The rest of the chapter is organized as follows. Section 2 presents a discussion
on the related works in the field of distributed data management techniques and
Data Grids. Section 3 lays down the overall framework of the proposed system and
discusses the different components in details. Section 4 provides a detailed empir-
ical study of the proposed system. Section 5 presents a brief conclusion and future
direction of this research.

2 Related Work

In this section, we study the existing works on three important aspects: Distributed
Multimedia Database Management Framework, Distributed Index Structures and
Data Grids. Developing a successful distributed multimedia database management
framework over the Grid environment is basically a seamless combination of all
these different aspects. Thus, understanding the characteristics of each aspect helps
us clearly define the capabilities that should be incorporated into the proposed ar-
chitecture. Also, it helps us identify the limitations of each individual aspect when
handling multimedia data in a distributed Grid environment. Thus, this survey of
related works enable us to appreciate the necessity of an effective multimedia data
management framework to be incorporated into a Grid architecture.

Distributed Multimedia Database Management Framework: Though there are
some proposed architectures for distributed multimedia database systems such as
[2][17], none of them discusses the intrinsic database components; for example,
the index structures, and the query manager in the distributed environment. [17]
proposes an object-oriented database with an object request broker (a brokering
server). It uses specialized repository servers for storing different multimedia data
types. Using specialized servers enables some query functionalities such as content-
based retrievals, and optimized access to be allocated at the repository level rather
than at the database level. Thus clearly, here the data storage is separated from the
main database functionalities. Hence, different database tuning and optimization
techniques depending on both the data stored as well as on the user accessibility
including query optimization, query cost determination, and index structures cannot

A Distributed Multimedia Data Management over the Grid 5

be used seamlessly across the entire framework (since storage and database func-
tionalities are separated). [2] also treats each multimedia data as an object and does
not represent them as feature vectors. Hence, there is no well-defined index struc-
ture to facilitate efficient storage and retrieval based on the contents. The retrieval
is done with object graphs where two levels of object graphs are used: namely local
and central. Thus, the logical relationships among the multimedia data objects are
captured but their relationship in terms of their content as well as storage strategies
are not handled. Moreover, it doesn’t propose any index structure, as robust as ones
used in relational database systems, to be deployed in a distributed environment.

Distributed Index Structures: A replicated index structures for distributed data
was proposed in [24]. It proposes a method called dPi-tree and is based on the Pi-
tree [11]. The index structures are replicated in each location of the distributed en-
vironment without message passing schemes. Though the proposed index structure
can be utilized in a distributed environment, it is not tailored to suit the requirements
of complex multimedia data. Firstly, although theoretically it is supposed to be able
to handle multidimensional data, complex containment issues can arise. Secondly, it
is a space-based index structure and hence does not support similarity search (based
on distance calculation) naturally (unlike distance-based index structures). Finally,
content-based retrievals, typical for multimedia data, are not embedded in the search
methodologies. Although [19] proposes a distributed search tree in a dynamic dis-
tributed environment, it uses an extended binary leaf search tree. This limits the
usability of such approach for multidimensional data representation. Also, [18] pro-
poses a lazy update method for B+ tree in a distributed environment. However, B+
tree is not a suitable candidate to handle multimedia data as it cannot handle multi-
dimensional data effectively.

Data Grid: [7] discusses the various approaches to designing a Data Grid. It de-
fines the requirements that a data Grid must satisfy and APIs necessary for its imple-
mentation. The design of the early data Grids was based on four major principles:
mechanism neutrality, policy neutrality, compatibility with Grid infrastructure and
uniformity of information infrastructure. The architecture is typically a two-layered
structure, where the lower layer provides the data Grid specific services like those
related to the storage system and to the meta-data repository. The upper layer con-
sists of the high-level components such as the replica selection service, and replica
management service. The storage system utilized in the proposed architecture are
basically file structures and use GridFTP for data transfers. There are no database
components such as index structures or query managers associated with the storage
and meta-data repositories. [14] defines a virtual Data Grid that is capable of encom-
passing the expertise of large distributed diverse multidisciplinary communication.
It proposes general abstractions for representing data and computation. Further, it
lays down a virtual data schema and an architecture that develops techniques for
representing and maintaining data on an Open Grid Service Architecture (OGSA).
These architectures are specifically for static data and do not addresses issues such
as data synchronizations, and transaction data policies. To enable these frameworks
to support dynamic data, services such as data regionalization, data synchronization,

6 Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Chen

transactional management, data locality, event notification, and data load functions
need to be introduced [26]. Additionally, data grids should have specific data dis-
tribution and data replication policies. For example, distribution approaches such
as round-robin, Gaussian, random and Poisson can be used [26]. Data replication
policy [22] is an important characteristics of a data Grid. The combination of the
data distribution and the data replication policy defines the ability of a data region
to support an application with minimum amount of data movement.

3 Overall Framework

Figure 1 presents the overall framework of the Distributed Multimedia Architec-
ture over Grid. Each data node of the Grid is connected to the other nodes and has
a multimedia database management system embedded in it. Each data node has a
GridFTP server that takes care of the physical transfer of multimedia objects from
one node to another. The data is basically stored in a data server. The multimedia
database framework is divided into four major components: a multimedia interface,
a core DBMS engine, a content-retrieval engine and a high-level relationship man-
ager. These four components interact with one another to achieve the major func-
tionalities including query, and update. The multimedia interface handles the users’
requests and access the other three components to provide the information requested
by the user. The core DBMS engine manages the functions related to the database
that store the multimedia data. It is comprised of sub-components that are useful to
designing a successful database system in a distributed Grid environment.

While components such as a transaction manager, and a query optimizer are the
general components needed for a complete database engine design, components spe-
cific to a distributed environment such as an automatic load balancing system are
also present. The content-retrieval engine houses the index structure and the access
manager. The index structure along with the access manager handles the content-
based retrieval queries. The index structure is a replicated multidimensional index
structure which logically spans across the data nodes over the Grid. Thus, the index
structure can be considered as a single unit organizing all the data that the entire
Grid is comprised of. The high-level relationship manager maintains the semantic
relationship among the multimedia data objects. It has three major sub-components:
an affinity relationship metric, a local affinity update unit and a global affinity syn-
chronization unit. The affinity relation metric basically captures and stores the high-
level relationship between the multimedia data objects, based on the user access
and feedback, while utilizing the Markov Model Mediator construct (discussed in
details in Section 3.2.1). The local affinity update unit collects the user feedback
and access patterns and updates the affinity relationship metric after specific time
intervals. The global affinity synchronization unit updates the global affinity met-
rics based on the update of the local affinity metrics. The maintenance and use of
the global affinity synchronization enables the users to issue queries transparently to
the Grid without concerning themselves about the location and relationships of the

A Distributed Multimedia Data Management over the Grid 7

multimedia data. Additionally the data Grid may contain other components specific
to the Grid: namely a replica manager designed specially to cater the typical needs
of multimedia data and applications; a failure management component designed to
detect the non-functioning of a particular node and how to share the load among the
functioning nodes; etc.

Fig. 1 Overview of the Proposed Framework.

3.1 Replicated Multidimensional Index Structure

As mentioned in Section 1, an index structure is the backbone of an efficient
database management system and is the link between the data storage and the re-
trieval engines. For the proposed framework, the index structure should be designed
to satisfy two basic requirements. First, it should be able to handle multimedia data
efficiently; and second, it should be possible to be deployed over a Grid environ-

8 Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Chen

ment. To satisfy the first requirement, the index structure should be a multidimen-
sional index structure, so that it can handle the multidimensional representation of
the data objects. Also, the similarity search methods supported by the index structure
should be able to handle the semantic relationship among the multimedia data ob-
jects along with the content-level closeness while answering the queries. To satisfy
the second requirement, the index structure should be able to span across several
distributed data locations and consider characteristics of each while dealing with
user requests.

We proposed several multimedia index structure for different multimedia data
types including images, and videos in our previous works [4][5][6]. [4] discusses a
multidimensional index structure designed to handle images. [5] extends the idea to
a hierarchical index structure, supporting video data objects. It can handle the hierar-
chical relationship among the different video units and facilitate intra and inter-unit
retrieval strategies. Since having separate index structures for different multime-
dia data types can cause difficulty while embedding the index structure into the
database kernel (both technical issues as well as optimization policy issues for other
components residing in the kernel), [6] lays down a generalized index structure for
managing both images and videos from one common platform. Additionally, it has
the capability to be extended to support other forms of multimedia data such as doc-
uments. [4][5] and [6] support the popular multimedia data retrieval strategy based
on content without violating the underlying indexed space. Basically, the k-NN al-
gorithm, which is the standard similarity search algorithm for tree-based indexes, is
customized to support the content-based retrievals while considering the high-level
semantic relationships among the data objects. In this chapter, we extend the multi-
dimensional index structure for images, called Affinity Hybrid Tree (AH-Tree) [4]
and incorporate it into the proposed multimedia database management framework
in a Grid environment. We chose AH-Tree as we wanted to use images as the test
bed for developing and testing the initial framework of the distributed multimedia
database. It should be pointed out here that both [5] as well as [6] can be used in the
proposed framework without any loss of generality.

We use a replicated indexing approach, similar in philosophy to the one proposed
in [24]. The multimedia data is distributed across multiple data nodes of a Grid and
the index structure is replicated across multiple sites as well. Each data node with
an index replica has efficient access to the local data. There is a logical link among
the local index structures at each node. Thus while searching, the search results gen-
erated pick up the closest match to the submitted query among all the multimedia
data present in the entire Grid repository. Each multimedia data is represented with a
data signature that enables the system to uniquely identify a multimedia data object.
The data signature F of a multimedia object is represented with two components,
FA and FB.

FA = {x1,x2,,xi} (1)

FB = {ob jectid,nodeid,replica f lag} (2)

A Distributed Multimedia Data Management over the Grid 9

The feature vector representing the distribution of each multimedia data object is
a union of the two parts represented as:

F = {FA∪FB} (3)

FA represents the low-level feature vector of the multimedia data object and FB
is the unique identifier of the data object. The ob jectid is the identifier of the mul-
timedia data object, nodeid is the identification of the data node in the Grid where
it belongs and replica f lag is set to 1 or 0 depending on whether the particular data
object has a duplicate entry in any of the other data nodes. If 1, the replica man-
ager of the node under consideration should be consulted whenever this particular
data is accessed or modified. The benefit of using the data signature is that it makes
the proposed framework transparent to the type of multimedia data object used. Any
multimedia data can be represented with F . F might need slight extension to capture
the characteristics of the particular multimedia data used.

3.1.1 Node Structures

as a distance-based indexing, there are four basic node types as discussed in [4]:
namely, Since AH-Tree is a hybrid structure with both a space-based indexing as
well Space Index Node, the Space Data Node, the Metric Index Node and the
Metric Data Node. The structure of the nodes of the AH-Tree is summarized in
Table 1.

Table 1 Summary of Node Structures
Node Structure Affinity

Relationship
1 Space Index Node dimension, split positions X
2 Space Data Node root node of metric index X

3 Metric Index Node root of subtree, extending
√

(max affinity)
radius, max affinity

4 Metric Data Node indexed image objects
√

The leaf nodes (Space Data Node and Metric Data Node) of the index tree are
linked with one another to enable easy sequential traversal. Also, a virtual link exists
between the local index tree structures of the Data Grid, which have a large number
of semantically related data objects. The High-level Relationship Manager along
with the Global Affinity Synchronization component determines which data nodes
(locations) of the Grid have large amount of semantically related data objects. Those
index structures are logically linked to represent a virtual single multidimensional
index structure.

10 Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Chen

3.1.2 Insertion and Deletion

To insert a node in the index structure, the tree is recursively traversed until a candi-
date leaf node is identified. A particular sub-tree leading to the leaf node is chosen
by selecting an intermediate node for which there is no (as in Equation 4) or mini-
mum increase (as in Equation 5) in the covering radius. Essentially, a new object is
inserted at the leaf node, and if it is full, a split is required followed by a rearrange-
ment of the tree with an increase in the number of levels. Thus, it can be seen that
index structure grows in a bottom-up manner and hence maintains a balanced struc-
ture. Whenever a new data object is inserted into the index structure, an entry for its
high-level semantic relationship with other multimedia objects is created in the Lo-
cal Affinity Update component and the Affinity Metrics. As subsequent queries are
issued, user feedback on the results generated are collected over time. They are used
to populate/update values at Affinity Metrics and Local Affinity Update respectively.

d(Or,On) ≤ r(Or) (4)

d(Or,On)− r(Or) → minimum. (5)

To delete a node in the index structure, the tree is first traversed to locate the
node. If it is an intermediate node, the pointer to the sub-tree it points to is set to
zero and the memory is released. If it is a leaf-node, the actual data object at the
repository pointed by it, is removed. As with any update, the Local Affinity Update
component and the Affinity Metrics are modified to reflect the change.

3.2 Distributed Query Processing

The query processing component implements the most popular form of multime-
dia similarity search: namely, content-based retrieval. The Distributed Query Pro-
cessing method is comprised of two major components. The first component is
called the Multimedia Application Interface (as in Figure 1). It is a global query
processing interface that takes in queries from the users and sends them across the
data nodes of the Grid. At each data node, the queries are received by the local
Content-Retrieval Engine, and is the second component of the Distributed Query
Processor. The queries, once received by the individual local query processor are
processed with the k-NN based similarity search algorithm of the multidimensional
index structure. The k-NN algorithm (as discussed in Section 3.2.3) searches the
underlying data repository based on both the low-level contents of the multimedia
data and their high-level semantic relationship. The search results, comprising of
the k closest data objects to the query, are returned from each data node of the Grid
back to the Multimedia Application Interface. The search results, returned by each
data node of the Grid have two pieces of information. First, the address of the multi-

A Distributed Multimedia Data Management over the Grid 11

media data object at the local repository of the particular Grid node; and second, its
distance from the query object. The result sets from each data node of the Grid are
merged together and sorted based on the distance. The top k objects from the sorted
list are retrieved from their corresponding local repositories and form the final query
result. Figure 2 demonstrates the distributed query process.

Fig. 2 Distributed Query Processing.

3.2.1 High Level Relationship

A major attribute for the successful processing of the issued queries is the efficient
maintenance and use of the high-level semantic relationship among the multime-
dia data objects. There are three major components of the High-Level Relationship
Manager: namely the Affinity Metrics, the Local Affinity Update and the Global
Affinity Synchronization. The Affinity Metrics stores the affinity relationships (as
discussed in Section 3.2.1) of the multimedia data objects stored in the local reposi-
tory of the Grid node. The Local Affinity Update maintains the update information of
the affinity values. The update process takes place whenever a new query is issued
and the user feedback of the query results is obtained. The Global Affinity Syn-
chronization helps in maintaining information necessary to synchronize the affinity
relationship among the different Data Grids of the nodes.

12 Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Chen

For example, let Image # 101 and # 369 be marked similar by the user in a
particular query instance. Also, let Image # 101 belongs to Node # 6 of the
Grid and # 369 belongs to Node # 2. A NXN matrix (N is the number of nodes
in the Grid) is updated at two locations (with same values): namely at the 6th

row and 2nd column and 2nd row and 6th column and the affinity is increased
between that particular pair of nodes.

If the number of nodes of a Grid are huge, it is not practical to store the semantic
closeness among all the nodes of the Grid. Instead, semantic closeness between the
Grid nodes belonging to logical regions are maintained. As mentioned earlier, in
this chapter we use image as the testbed for the prototype framework. Thus, in the
rest of the chapter, we discuss the different functionalities that handle images.

The high-level image relationship used in AH-Tree is captured using a stochas-
tic construct called the Markov Model Mediator (MMM) [25], that maps the low
level features and high level concepts in CBIR by capturing the image relationship
as perceived by the user. MMM is a probabilistic based mechanism that adopts the
Markov model framework and the mediator [25]. The MMM mechanism is repre-
sented as a 5-tuple λ = (S, F, A, B, π), where S is the set of images, A is the state
transition probability distribution, B is the feature vector and π is the initial state
probability distribution. From this tuple, our point of interest is the state transition
matrix denoted by A, where each entry (i, j) corresponds to the relationship between
image i and j. The MMM mechanism builds an index vector for each image in the
database and considers the relationship between the query image and the target im-
age. The main idea is the more frequent two images are accessed together, the more
related they are. The relative affinity measurement (a f fm,n) between two images m
and n is defined as follows:

a f fm,n =
q

∑
k=1

usem,k ×usen,k ×accessk (6)

Here, usem,k denotes the usage pattern of image m with respect to query qk per
time period, and accessk denotes the access frequency of query qk per time period.
The state transition probability matrix is built by having am,n as the element in the
(m,n)th position of A. The am,n value is defined as

am,n =
a f fm,n

∑nεd a f fm,n
(7)

It should be noted that any high-level image relationship capturing mechanism
similar to the affinity relationship can be used in the proposed index structure with-
out loss of generality.

A Distributed Multimedia Data Management over the Grid 13

3.2.2 Affinity Promotion

As derived and proved in [4], the high-level semantic relationship cannot be incor-
porated into the multidimensional index structure as it violates the properties of the
underlying indexed metric space. Thus, the affinity should be promoted from the
leaf to the intermediate root level during each query. Initially, the affinity between
the query object and the leaf nodes (at Level 0) of the index tree is determined. Then
for each intermediate node at Level 1, the maximum of the affinity values of its chil-
dren is calculated. This value is set as the affinity value of the particular intermediate
index node at Level 1. The process continues for each Level till the root is reached.
The affinity promotion technique has two important significances. First, it ensures
that there is no false dismissal (i.e., if there is a candidate multimedia data object at
some sub-tree of a node, the node and subsequently the sub-tree will be traversed).
Second, it avoids unnecessary traversal of sub-trees where there is no possibility of
the existence of any candidate node.

3.2.3 Distributed Content-Based k-NN Similarity Search

Table 2 presents the k-NN similarity search algorithm in a distributed environment
that supports Content-Based Image Retrievals (CBIR) over Grid. It follows a branch
and bound technique as in [16]. The algorithm presented in Table 2 is for the metric
region. Before ensuing the search on the metric region, a filtering stage is undertaken
where the space-based index structures in each node of the Grid is searched to get
the k closest feature-spaces. They are merged together and the metric search is exe-
cuted on them. Although every index structure can have two basic similarity search
paradigms: namely Range Search and k-NN Search, for CBIR based retrievals, k-
NN approach models the information requirements most naturally. Hence, we con-
centrate exclusively on the k-NN based search in this chapter. To issue content-based
retrieval queries, a user must submit the query to the Multimedia Application Inter-
face. The low-level features are extracted from it to represent the submitted query
in the same feature space as that of the indexed data. For example, if the images
stored in the Grid are represented as color and texture features, when a query image
is submitted, it should be also represented as a feature vector comprising of color
and texture features. The query in the form of the feature vector is submitted to the
nodes of the Grid to the local multimedia interface at each Grid node. The affinity
value is promoted in the multidimensional index structure as explained in Section
3.2.2. The index structure is traversed from the root to the leaf level. For each inter-
mediate node of the index structure, the similarity between the indexed multimedia
object and the query is determined in terms of both the low-level feature similarity
and high-level semantic closeness. If the indexed multimedia object under consider-
ation is more similar than the current kth candidate in the priority list, it is replaced
with the indexed multimedia object just considered. The priority queue is updated
and the search continues recursively on the next closest candidate. Typically, the
sub-tree contained in the candidate intermediate index entry is searched recursively.

14 Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Chen

If the examined node is a leaf and satisfies the similarity conditions of distance and
affinity, the corresponding data object is pushed into the result set. The result set
itself is another priority queue, where the results are prioritized according to the dis-
tance and affinity score with the query object. Once, each Grid node has a result-set
ready, the result-sets are sent back to the Multimedia Application Interface. Here,
the result sets get merged and sorted. The top k objects are returned to the user as
the query result. The user feedback is collected on each presented query result and
components in the High-Level Relationship Manager are updated accordingly.

When the number of Grid nodes is large, it is not practical to involve all the nodes
for every query. Generally, under those circumstances, initially, the query is submit-
ted to a reasonable number of Grid nodes (eg. in the range between 100− 200).
After receiving the query results for the first iteration, the Global Affinity Synchro-
nization of the Grid nodes, which have data objects marked similar to the query
object by the user, is consulted. The Grid nodes that are most similar to the Grid
node under consideration (i.e., those that contain similar multimedia data objects)
are selected. In the next iteration, the refined query is submitted to these selected
Grid nodes and the process continues. The merged and sorted result set produced
at the end of each query iteration is stored. After a few iterations (the number of
iterations depends upon the Grid layout), all the result sets are merged and sorted
again to get the top k results corresponding to the issued query across the entire Grid
multimedia data repository.

It should be pointed out here that to reduce the number of distance computations
and use as many pre-computed distances as possible, a technique similar to [8] is
introduced. In this method, in order to avoid unnecessary computing of distances
between every pair of index entry with the query, the covering radius of a parent
node, its distance with the child, along with its distance with the query object, is
tested before a particular sub-tree is considered. It uses the classic metric space
property of triangular inequality to formulate the checking condition. To reach a
child node, its parent must have been traversed and thus there has to be a distance
computation between the parent with the query. This distance computation is saved
and reused for the next iteration. For example, one needs to start by computing the
distance between the root with the query object. It then checks if any child of the
root satisfies the qualification condition. If so, the corresponding child, along with
its sub-tree, is considered.

3.3 Automatic Load Balancing

Any application in a Grid environment is incomplete without a proper load balanc-
ing functionality. Additionally, the domain that is dealt in this research (i.e. Multi-
media Data) has an undeniable necessity for an effective load balancing component.
This is because, multimedia data is much bulkier than ordinary text-based alpha-
numeric data and the quality of service expected from multimedia applications is
much higher than traditional text-based retrieval methods. Thus, whenever a partic-

A Distributed Multimedia Data Management over the Grid 15

Table 2 Implementation of Distributed Content-Based k-NN Similarity Search
Distributed Similarity Search(Q, Nchild , r(Q), aff) { //CBIR over Grid.

Get User Query;
Extract the low-level feature values from the query;
Submit the query across the Grid;
For each Node of the Grid do: {
Affinity Promotion(); //promotion of affinity value.
∀ Or in Nchild do: {

if (Or is an intermediate index node) {
if (| d(OM , Q) - d(Or , OM)| ≤ r(Q)+r(Or)) {

Compute d(Or , Q) and aff(Or , Q);
if ((d(Or , Q) ≤ r(Q)+r(Or)) && (aff(Or , Q) ≥ aff)) {

Distributed Similarity Search(ptr(T(Or)), Q, aff);
//T(Or): pointer to the subtree.

}}}
elseif (Or is a leaf object){

If the object qualifies the distance function and the affinity,
add to the result set along with the distance d;

}}}
Merge result set from each Grid node;
Sort result set on distance (similarity) with the query Q;
Pick the k closest multimedia objects from the sorted result set;

}

ular Grid node is overloaded, the load should be distributed among the less-utilized
Grid nodes to attain a balanced computation cost. Moreover, as discussed in Section
3.2.3, when a query is issued to a Grid, it is simultaneously issued to the Grid nodes.
Query results from all the nodes of the Grid are collected and compiled to present
the user with a single result set. Thus, if one/more node of the Grid is overloaded, it
affects the performance of the entire Grid framework as the Multimedia Application
Interface need to wait till it receives responses from all the Grid nodes. We note
that in some applications, although load balancing may result in a more balanced
utilization of resources, it may however worsen the overall performance. For typical
Multimedia Data Application, this is not the case though.

We propose a load balancing algorithm as presented in Table 3. The basic heuris-
tics used behind the proposed algorithm is computation time ∞ number of indexed
data points. Since, for developing the index structure and for subsequent queries,
distances between pairs of multimedia objects need to be calculated. The number of
necessary distance computations increases as the number of data objects involved
increase. Now, the total number of distances computed determines the overall com-
putation time. So, to balance the computation time over the Grid, the number of
multimedia data objects in each Grid node repository is balanced. The load balanc-
ing is typically not achieved in a single iteration but requires quite a few iterations.
The number of iterations required depends on the data set involved. For each iter-
ation, the maximum and minimum computation time for processing the submitted
query is determined. Additionally, the Grid nodes having the maximum and mini-
mum values, are identified. Normally, the number of data points in the Grid node

16 Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Chen

Table 3 Load Balancing in the Distributed Multimedia Database Management Framework

Load Balancing(n, i) { //Load Balancing over Grid.
For each iteration i {

Set min time = minimum computation time among n Grids in iteration i−1;
Set max time = maximum computation time among n Grids in iteration i−1;
Set nmin = node with minimum computation time;
Set nmax = node with maximum computation time;
if (number of data objects in nmax ≥ number of data objects in nmin)

Set num data moved = (number of data objects in nmax − number of data objects in nmin)/2;
else

Set num data moved = x; //x is a pre-determined value.
Move num data moved from nmax to nmin;

}
}

taking the maximum time should be more than that taking the minimum time. If the
condition is not as it is predicted, it can be concluded that the imbalance is not due
to the query application but due to some other applications on the Grid. Under such
circumstance a pre-defined number of data points are moved from the most loaded
node to the least loaded one. The pre-defined number (x) is determined based on the
initial load in each Grid node. If the condition is satisfied, data points are moved
from the most loaded to the least loaded such that they both end up having the same
data load. The process is repeated until a desired balanced state is reached.

It should be mentioned here that the proposed algorithm is devised with the as-
sumption that the Grid under consideration is a dedicated multimedia data manage-
ment Grid with no other computation intensive applications running simultaneously.
In other scenarios, this basic load balancing algorithm should be extended to include
the different real-time factors that would decide on the amount of data to be moved.
Such modifications, specific to the Grid characteristics, should be possible without
any loss of generality.

3.3.1 Basics of Load Balancing in a Distributed Environment

There are two approaches of dynamic load distributions: load-sharing and load-
balancing. Where both load-sharing and load-balancing approach tends to max-
imize the rate at which distribution systems work, when required resources are
available, load-balancing additionally attempts to equalize the loads on the avail-
able nodes [23]. Additionally, load distribution algorithms can be categorized as:
Sender-Initiated Algorithms [10], Receiver-Initiated Algorithms [10], Symmetri-
cally Initiated Algorithms [20] and Adaptive Algorithm [21]. As the name suggests,
in Sender-Initiated Algorithms, load-distribution is initiated by an overloaded sender
that tends to send a task to an under-loaded receiver. In the Receiver-Initiated Algo-
rithms, load distributions is initiated from an under-loaded node (receiver) to a over-

A Distributed Multimedia Data Management over the Grid 17

loaded node (sender). For Symmetrically initiated algorithms, both the overloaded
as well as the under-loaded nodes initiate the load-distribution and possess the ad-
vantages of both the Sender-Initiated as well as the Receiver-Initiated algorithms.
The Adaptive algorithms attempts to address the issues that arise in the above three
approaches. The main issue is the indiscriminate polling by the senders negotiation
component. The adaptive algorithm maintains the state of the relationships between
the sender and the receiver and adapts itself so as to scale well in larger systems.
The load balancing algorithm proposed for our framework can be considered as the
mixture of the sender-initiated and the adaptive approach. It considers the states of
all the nodes of the distributed environment but essentially transfers load from the
most loaded node to the least loaded. A mixed approach is utilized because Grid en-
vironments have an increasing potential to grow. Thus, any function developed for
a Grid environment should be scalable. By keeping track of the states of the over-
all system, the different load balancing parameters (such as the amount of load that
should be transfered, identification of the nodes whose loads should be balanced)
can be adjusted.

4 Empirical Study

We carried out an extensive analysis of the performance of the different critical
functionalities of the proposed framework with a varied data set and in a varied en-
vironment. As mentioned before, in this chapter we used images as the multimedia
object type and all subsequent experiments were performed on them. We used about
9000 images from different categories, collected from the COREL dataset [9]. These
9000 images were distributed among the data repositories of the different nodes of
the Grid. The simulated distributed/Grid environment has 8 Intel-based nodes. The
total storage available for users is around 320GB. Each node is simulated by a Pen-
tium 4 processor with Hyper Threading at 3GHz. The images are represented with
12 features comprising of colors and textures.

We divided the experiments into three categories. At first, we analyze the rela-
tionship of the computation cost with the number of distribution nodes while gen-
erating the index tree. The experimental results presented in Figure 3 demonstrates
that as the number of distribution nodes increases, the average computation time
(measured in seconds) decreases. The same data load is distributed over multiple
nodes and they all run in parallel, thus decreasing the computation overhead of in-
dividual node. We performed k-NN search for about 15 queries and averaged the
results. The computation time for each instance for each query is the maximum of
the computation time among the distributed loads. This is because, the Multimedia
Application Interface waits for the query results from all the nodes before providing
the aggregate query result to the user. It is interesting to note that the computation
overhead during the k-NN search has no direct relationship with the number of dis-
tribution nodes used. Each node handles the query individually and the time taken
for completion it depends on the data set (both the data load as well as the data

18 Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Chen

content) in the particular node. As demonstrated in Figure 4, for Data Set A dis-
tributed over 4 nodes, the computation time increases steadily with the increase of
the number of nodes. However, Figure 5 demonstrates that for a different data set B,
the computation time drops when the number of nodes is 3 before rising again when
number of nodes is 4.

1 2 3 4
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Computation Time for Tree Generation with 9000 Multimedia Objects

Number of nodes in the Grid

Ex
ec

ut
io

n
Ti

m
e

fo
r G

en
er

at
in

g
In

de
x

Tr
ee

 (i
n

se
co

nd
s)

Fig. 3 Relationship of the Computation Time with the number of Distribution Nodes during Tree
Generation.

The average accuracy of query results is about 80−85%. We deployed a distance-
based index structure, M-Tree, which doesn’t consider the high-level semantic re-
lationships during the retrievals. The results obtained, although comparable in the
computation overhead to the proposed framework, generated query results with very
poor relevance (averaging as low as 15−20%).

The load balancing technique is demonstrated in Figure 6, 7, and 8, respectively.
It should be noted that the load is balanced after different iterations for different
data sets. We limited our examination for 5 iterations on an average, since in most
of the cases we reached a considerable balanced load distribution within 5 iterations.
Again, the variation is dependent on the data set used. In our experiment, we varied
the number of data sets used in each case to bring a variation. Scenario I uses 500
data points, Scenario II uses 2300 data points and Scenario III uses 8500 data points,
respectively.

From the detailed experimental analysis, it can be concluded that the proposed
Distributed Multimedia Database Management Framework is capable of fulfilling
the following requirements. First, it leverages the distributed environment of the
Grid in economizing the computation overhead. Second, it is capable of supporting
the popular multimedia retrieval requirements with relevant query results in a dis-

A Distributed Multimedia Data Management over the Grid 19

1 2 3 4
52

54

56

58

60

62

64

66

68

70
Computation Time for k−NN Search with Data Set A

Number of nodes in the Grid

Ex
ec

ut
io

n
Ti

m
e

fo
r k

−N
N

se
ar

ch
 (i

n
se

co
nd

s)

Fig. 4 Relationship of the Computation Time with the number of Distribution Nodes during k-NN
Search for Data Set A.

1 2 3 4
50

52

54

56

58

60

62

64

66

68

70
Computation Time for k−NN Search with Data Set B

Number of nodes in the Grid

Ex
ec

ut
io

n
Ti

m
e

fo
r k

−N
N

se
ar

ch
 (i

n
se

co
nd

s)

Fig. 5 Relationship of the Computation Time with the number of Distribution Nodes during k-NN
Search for Data Set B.

20 Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Chen

1 2 3 4 5
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Load Balancing for Scenario 1

Number of Iterations

Ex
ec

ut
io

n
Ti

m
e

fo
r G

en
er

at
in

g
In

de
x

Tr
ee

 (i
n

se
co

nd
s)

1 node
2 nodes
3 nodes

Load Balanced at Iteration 3

Fig. 6 Experimental Results for Load Balancing for Data Set I.

tributed environment. And finally, it successfully embeds functionalities typical to
distributed environments, like a load balancing, into the multimedia environment, to
make the proposed architecture adept for the Grid.

5 Conclusion and Future Works

In this chapter, we proposed a Distributed Multimedia Database Management
Framework over a Grid. The framework introduced includes the important com-
ponents necessary for storing and supporting Multimedia Applications over the
Grid. A multidimensional replicated index structure was proposed that can support
the popular multimedia retrievals based on contents. The framework introduces a
stochastic construct, called the Markov Model Mediator, to capture and utilize the
high-level semantic relationship among the multimedia objects. The novel inclusion
of the high-level semantic relationship into the k-NN search algorithm, without vi-
olating the underlying indexed space, bridges the semantic gap and increases the
relevance of query results manifold.

A load balancing approach for the multimedia data objects was also introduced,
which successfully distributes the load across all the nodes of the Grid. In addi-
tions, intensive experimental analysis is performed with varied data set and differ-
ent Grid configurations, which demonstrates that the proposed framework is a novel
approach and a big step towards a full-fledged Multimedia Data Grid. The current
framework can be extended in several directions. First, more Grid specific compo-

A Distributed Multimedia Data Management over the Grid 21

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Load Balancing for Scenario 2

Number of Iterations

Ex
ec

ut
io

n
Ti

m
e

fo
r G

en
er

at
in

g
In

de
x

Tr
ee

 (i
n

se
co

nd
s)

1 node
2 nodes
3 nodes

Load Balanced at Iteration 5

Fig. 7 Experimental Results for Load Balancing for Data Set II.

1 2 3 4 5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Load Balancing for Scenario 3

Number of Iterations

Ex
ec

ut
io

n
Ti

m
e

fo
r G

en
er

at
in

g
In

de
x

Tr
ee

 (i
n

se
co

nd
s)

1 node
2 nodes
3 nodes

Load Balanced at Iteration 3

Fig. 8 Experimental Results for Load Balancing for Data Set III.

nents such as replica managers, auto failure detection and recovery of the Multime-
dia Data Nodes can be added. Second, the current framework should be extended
to support other forms of multimedia data such as videos, and documents within
one seamless platform. And third, developing Multimedia Grid Services such as

22 Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Chen

Content-Based Information Retrievals and Content-Based Multimedia search could
be developed.

Acknowledgements This work was supported in part by the National science Foundation (grants
OISE-0730065, OCI-0636031, and HRD-0833093) and in part by IBM. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect those of the NSF and IBM. The authors would like to thank Mr. Dongri Luo
for his help in enabling the Index structure to be executed in the Linux environment successfully.

References

1. R. Bayer (1971), Binary B-Trees for Virtual Memory in Proceedings of SIGFIDET Workshop,
pp. 219–235

2. P. B. Berra, C. Y. R. Chen, A. Ghafoor, C. C. Lin, T. D. C. Little, and D. Shin (1990) Archi-
tecture for distributed multimedia database systems. Journal of Computer Communication,
(13)4, pp. 217–231

3. K. Chakrabarti and S. Mehrotra (1999) The hybrid Tree: An Index Structure for High-
Dimensional Feature Spaces in Proceedings of the IEEE International Conference on Data
Engineering, pp. 440–447

4. K. Chatterjee and S.-C. Chen (2006) Affinity Hybrid Tree: An Indexing Technique for
Content-Based Image Retrieval in Multimedia Databases in Proceedings of the IEEE Inter-
national Symposium on Multimedia (ISM06), pp. 47–54

5. K. Chatterjee and S.-C. Chen (2008) Hierarchical Affinity-Hybrid Tree: A Multidimensional
Index Structure to Organize Videos and Support Content-Based Retrievals in Proceedings of
2008 IEEE International Conference on Information Reuse and Integration, pp. 435–440

6. K. Chatterjee and S.-C. Chen (2008) GeM-Tree: Towards a Generalized Multidimensional
Index Structure Supporting Image and Video Retrieval in Proceedings of the Fourth IEEE
International Workshop on Multimedia Information Processing and Retrieval (MIPR2008),
in conjunction with IEEE International Symposium on Multimedia (ISM2008), pp. 631–636

7. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke(2001) The data grid: to-
wards an architecture for the distributed management and analysis os large scientific datasets.
Journal of Network and COmputer Applications 23:187–200

8. P. Ciaccia, M. Patella, and P. Zezula (1997) M-tree: An Efficient Access Method for Similarity
Search in Metric Spaces in Proc. 23rd VLDB International Conference, pp. 426–435

9. COREL STUDIO http://www.digitalriver.com/v2.0-img/operations/corelpps/desc/index.htm.
Cited 29 March 2009

10. D. Eager, E. D. Lazowska, and J. Zahorjan (1986) Adaptive load sharing in homogeneous
distributed systems. IEEE Trans. Softw. Eng., (12)5, pp. 662–675

11. G. Evangelidis, D. Lomet, and B. Salzberg (1995) The hB-Pi-Tree: A modified hB-tree
supporting concurrency, recoverey, and node consolidation in Proceedings of Very Large
Databases Conference, pp. 551–561

12. I. Foster, C. Kesselman (1999) The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers

13. I. Foster (2002) What is the Grid? - a three point checklist. GRIDtoday, (1)6
14. I. Foster (2003) The virtual data grid: a new model and architecture for data-intensive col-

laboration in Proceedings of the 15th International Conference on Scientific and Statistical
Database Management, pp. 11–22

15. I. Foster, C. Kesselman, and S. Tuecke (2001) The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of Supercomputer Applications, 15(3), pp. 200-
222

A Distributed Multimedia Data Management over the Grid 23

16. A. Guttman (1984) R-trees: A Dynamic Index Structure for Spatial Searching in Proceedings
of the 1984 ACM SIGMOD International Conference on Management of Data, pp. 47-57

17. L. Ivan, M. Ricarte, and C. M. Tobar (1996) Towards an Architecture for Distributed Mul-
timedia Databases in Proceedings of the 1996 IASTED/ISMM International Conference on
Intelligent Information Management Systems

18. T. Johnson and P. Krishna (1993) Lazy updates for distributed search structure in Proceedings
of ACM SIGMOD Conference, pp. 337–346

19. B. Kroll and P. Windmayer (1994) Distributing a search tree among a growing number of
processors in Proceedings of ACM SIGMOD Conference, pp. 265–276

20. P. Krueger and M. Livny (1987) The Diverse Objectives of Distributed Scheduling Policies
in Proceedings of the IEEE Symposium on Distributed Computing Systems, pp. 242–249

21. P. Krueger and R. Chawla (1991) The Stealth distributed scheduler in Proceedings of the 11th
International Conference on Distributed Computing Systems, pp. 336–343

22. H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman (2002) Data Replication Strate-
gies in Grid Environments in Proceedings of the 5th International Conference on Algorithms
and Architecture for Parallel Processing, pp. 378–383

23. M. Livny and M. Melman (1982) Load balancing in homogeneous broadcast distributed sys-
tems in Proceedings of the Computer Network Performance Symposium, pp. 47-55

24. D. Lomet (1990) Replicated Indexes for Distributed Data in Proceedings of International
Conference of Parallel and Distributed Information Systems, pp. 1–8

25. M.-L. Shyu, and S.-C. Chen, and M. Chen, and C. Zhang, and C.-M. Shu (2003) MMM: A
Stochastic Mechanism for Image Database Queries in Proceedings 5th International Sympo-
sium on Multimedia Software Engineering (MSE2003), pp. 188–195

26. M. D. Stefano (2005) Distributed Data Management for Grid Computing. Wiley

