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ABSTRACT 
Parallel applications have a pressing need for the utilization of more 
and more resources to meet users’ performance expectations. 
Unfortunately, these resources are not necessarily available within 
one single domain. Grid computing provides a solution for scaling 
out from a single domain; however, it also brings another problem 
for some applications: resource heterogeneity. Since some 
applications require having homogeneous resources for their 
execution, virtualizing the resources is a noble and viable solution.  

In this paper, we present two parallel applications, namely WRF and 
mpiBLAST and report the results of different runs scaling them out 
from 2 to 128 virtual nodes. Later, we analyze the effects of scaling 
out based on the application’s communication behavior. 

Categories and Subject Descriptors 
D.1.3 Concurrent Programming: Distributed programming; 

Parallel programming. 

General Terms 
Experimentation, Performance   

Keywords 
Grid Computing, Performance Evaluation, Virtualization 

1. INTRODUCTION 
There are growing needs for large-scale computing, motivated by 
the emergence of grand challenge applications in science and 
engineering, as well as the massive growth of data available for 
analysis. The increasing adoption of programming paradigms such 
as the classic MPI and the recently popular Map-Reduce has 
provided simple yet powerful ways of massively parallel problem 
solving, generating more interests in large-scale computing as well 
as the need for systems that can support such computing.  

Different types of large-scale distributed computing systems have 
been developed over the last decade. At one end of the spectrum are 
volunteer computing systems (e.g., [1][2]), which are an aggregation 
of a large number of unmanaged resources contributed by individual 
resource owners. At the other end are grid computing systems (e.g., 
[3]), which are built upon managed resources shared across 
organizations. Common to these systems are applications that are 
tightly coupled with their underlying middleware frameworks and 

they are directly executed on the hosting resources. There are certain 
limitations to such approaches. From the perspective of application 
users, existing applications have to be reengineered to use the APIs 
provided by the middleware in order to enable them on those 
computing systems so that they can make use of the available 
resources. In addition, these modified applications have to rely on 
the mechanisms provided by the host operating systems (OSs) to 
protect their execution from the other tasks that are sharing the same 
resources. From the perspective of resource owners, these 
approaches have only limited control over applications’ resource 
usage and they also have to rely on the available OS mechanisms to 
protect the security of their resources. 

This paper considers a new approach to building large-scale 
computing systems by virtualizing existing resources using system 

virtual machine (VM) technologies (e.g., VMware [3][4] and Xen 
[5]) to support flexible resource sharing with strong isolation and 
convenient application deployment on customized execution 
environments. VMs are becoming pervasively used, driven by the 
fast maturation and wide availability of VM products, as well as the 
rapid growth of computing power of modern computers. Their 
deployments can be found from enterprise datacenters for resource 
consolidation to personal computers for multi-OS hosting. In our 
proposed system, VMs can be dynamically deployed to facilitate the 
consolidation of applications and co-allocation of the available 
resources of existing computers both scattered across organizations 
and owned by individuals. As a result, resource-demanding 
applications can be distributed and executed along with the VMs in 
a massively parallel fashion.  

In order to investigate the feasibility of building a large-scale 
virtualized computing system and to identify the potential research 
challenges, we have developed a large VM-based system consisting 
of more than 100 VMs hosted on 30+ shared existing physical 
servers at FIU. Two representative massively parallel applications 
are tested on this environment and an analysis on how the 
performance is affected is presented and analyzed accordingly 
taking into consideration the nature of each of application. 

The rest of this paper is organized as follows. Section 2 introduces 
two representative MPI applications with different communication 
behavior. Section 3 discusses how we used virtual machines in our 
work. Section 4 presents the experiments. Section 5 offers a more 
in-depth discussion. Section 6 examines the related work. Finally, 
Section 7 concludes the paper. 

2. Massively Parallel Applications 
Massively parallel applications are typically highly resource-
demanding and require large-scale resources to meet the expectation 
of their users. For this part of our discussion, without losing the 
generality, we focus on the Weather Research and Forecasting 
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(WRF) code [6] and mpiBLAST as two representative applications 
for high-performance computing: the former requires frequent 
communication and there are heavy data dependencies among its 
worker nodes (called tightly-coupled communication application), 
and the latter requires no communication among the worker nodes 
with little data dependency between the head and the worker nodes 
(called loosely-coupled communication application). 

2.1 WRF 
WRF is the latest numerical model developed by the National 
Center for Atmospheric Research (NCAR) for both operational 
forecasting and atmospheric research. A measure of its success is 
that WRF is being rapidly adopted by many meteorological services 
and researchers worldwide. Also, WRF was shown to significantly 
improve forecasts of hurricane structure and rainfall during the 
Florida Hurricanes of 2004 [7].  

The impact of hurricanes is so devastating throughout different 
levels of society that there is a pressing need to provide a range of 
users with accurate and timely information that can enable effective 
planning for and response to potential hurricane landfalls. The 
current version of WRF has been designed to run either on a single 
machine (with one or multiple processors) or on a cluster of 
homogeneous nodes connected through a high-speed local area 
network. It has not been designed to scale on resources of 
heterogeneous nature that may become available during the course 
of a simulation process. However, the high resource requirements of 
WRF for fine-resolution forecasting (1km resolution forecast) 
demand a large number of computing nodes with substantial 
memory and disk storage. Currently, few organizations (even 
national agencies) have either the required computational power or 
bandwidth to produce high resolution forecasts and deliver them to 
emergency management, businesses, and the public. Therefore, there 
is a pressing need for large-scale resource enablement of the WRF 
code so that it can utilize resources available from willing 
organizations and individuals who want to contribute. 

WRF is written in FORTRAN and C and is a typical MPI 
application. Like any other MPI application, it is very dependent on 
the architecture of the machine, the OS, and the libraries (including 
the MPI libraries) against which it is compiled. In addition, WRF is 
very sensitive to the homogeneity of the computing nodes of the 
cluster on which it is deployed. To enable WRF to execute on the 
large-computing resources provided by volunteer and grid 
computing systems, as discussed before, we need to modify the 
WRF code to interact with the API of their underlying middleware 
and compile it for all the possible heterogeneous resources. 
Unfortunately, even after overcoming this tedious and error prone 
task, WRF will not run properly on such environments as the 
heterogeneity in the hardware architectures of potential available 
resources will skew the result (e.g., some of the resources may be 64 
bit while others are 32 bit) and the WRF performance may be 
degraded significantly too. In this paper, we use resource sharing via 
virtual machines (VMs) to provide a solution to such problems.  

2.2 mpiBLAST  
Another typical example from the biology area that has benefited 
from massively parallel computing is sequence database search. 
DNA (peptide) and amino-acid (nucleotide) sequences have been 
used to identify organisms or species. In bioinformatics research, in 
order to identify a newly discovered sequence, the key approach is 

to search for similarities between a query sequence and existing 
sequences against biology databases. The BLAST (Basic Local 
Alignment Search Tool) is a popular tool providing basic algorithms 
for sequence database search. Traditional implementations of 
BLAST such as NCBI-BLAST have been proven to be too slow and 
as a result failed to catch up with the speed of database growing.  

mpiBLAST is an open-source parallel implementation of BLAST 
based on MPI [14]. One of the characteristics of mpiBLAST is 
database segmentation. By statically dividing large sequence 
database into small fragments and distributing those fragments to the 
nodes in a cluster, mpiBLAST enables simultaneous query over the 
set of fragments. MpiBLAST wraps the standard NCBI [15] 
formatting function to format raw sequence database into fragments 
and put them in a shared storage space. Extra disk I/O, from which 
traditional BLAST suffers when trying to fit the entire database into 
memory, is also avoided by the aggregate memory available from all 
the nodes in the cluster. 

3. Using Virtual Machines 

3.1 Resource Sharing via Virtual Machines  
VM technologies provide a powerful layer of abstraction for 
resource sharing. The VMs considered in this paper are system-level 
VMs, which are based on the virtualization of entire physical hosts’ 
resources, including CPU, memory, and I/O devices, presenting 
virtual resources to the guest operating systems and applications. 
Although the techniques proposed in this paper can also be applied 
to some of the other types of virtualization (e.g., OS-extension based 
VMs [7][8]), those are not the focus of this paper. System VMs 
include the following two types: full-virtualized VMs and para-
virtualized VMs. Full-virtualized VMs (e.g., VMware ESX [4]) 
present the same hardware interface to guest OSs as the physical 
machines and thus support unmodified OSs in the VMs. Para-
virtualized VMs (e.g., Xen [5]) present a modified hardware 
interface which is optimized to reduce the overhead of 
virtualization, but they require the guests OSs to be modified too in 
order to accommodate these changes.  

System virtualization is implemented by the layer of software called 
virtual machine monitor (VMM, a.k.a. hypervisor). VMM can be 
either hosted on an existing OS or run directly on top of the 
hardware. Hosted VMs leverage the native OS to access resources 
and thus typically incurs more overhead, but they can be 
conveniently deployed on existing resources and transparently work 
with their OS installations. Examples include VMware Server on 
Windows and Linux [3], Parallels Desktop on Mac OS [9]). Non-
hosted VMs require existing OSs to be removed so VMM can have 
direct control of the resources, but they can typically deliver better 
performance compared to hosted VMs. Examples of non-hosted 
VM products include Xen [5] and VMware ESX Server [4]. 
Therefore, non-hosted VMs are gradually gaining dominance in 
server virtualization environments, whereas hosted VMs are more 
widely used in systems where VMM needs to coexist with 
traditional OSs without disrupting the normal operation of those 
systems. 

The emergence of system VMs is driven by the fast maturation and 
wide deployment of virtualization technologies, as well as the rapid 
growth of computing power on modern computer systems. On one 
hand, VM technologies are already efficient and reliable enough to 
host mission-critical applications, and they are widely available for 
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the virtualization of various types of systems. Many VM products 
are also free to use, for example, Xen and kVM are released under 
GPL free software license, as well as VMware Server and ESXi are 
free of charge. On the other hand, the ever increasing computing 
power of today’s computers has provided the necessary resources to 
host VMs. In particular, multi-core and many-core CPUs are quickly 
emerging on not only high-end systems but also consumer products. 
VMs are particularly suited to provide space-sharing of resources 
for such systems. Driven by the above factors, system VMs are 
becoming increasingly more common within enterprises for server 
consolidations, as well as by end-users to run different OSs and 
applications on the same machine. 

This paper considers the use of dedicated VMs to host different 
application instances and allow them to share the underlying 
physical resources. The goal is similar to the resource sharing 
provided by conventional multi-user, multi-programming OSs, but 
the multiplexing of applications to resources is provided at a lower 
level of the system abstraction. It thereby has the following 
advantages in supporting resource sharing. 

Application and Resource Security: Because system 
virtualization multiplexes resources below conventional OSs, it can 
provide strong isolation between an application in a VM and other 
tasks that share the same host. For a malicious piece of code to 
comprise the resource, it has to break the protection provided by 
both the guest OS and VMM layers. It is also well recognized that 
because a VMM is a much thinner software layer that a typical OS, 
it is much easier to be implemented in a robust way without hidden 
security holes. Therefore, VMs can provide stronger security to both 
the resources and the tasks that are sharing the resources.  

Failure and Performance Isolation: In addition to better 
security protection, VMs also provide strong failure isolation. A 
catastrophic failure happened inside a VM (e.g., OS crashes or file 
system corruptions) will not affect the normal executions of the 
other tasks outside of this VM. In terms of performance isolation for 
resource sharing applications, research has also shown that hosting 
applications with independent VMs can provide very good 
performance isolation [5]. In fact, in the presence of a misbehaving 
application, system VMs offer much better isolation of interference 
compared to OS-level resource sharing approaches [10]. 

Resource Allocation Flexibility: VMs can be used as resource 
containers to allow flexible resource allocation. Current VM 
technologies typically allow VMs to be created with desired amount 
of resources in terms of CPU numbers, memory size, and disk 
capacity. Server-class VM (e.g., VMware ESX Server, Xen) 
products also provide fine-grained support for dynamic adjustment 
of VMs’ CPU and memory shares as well as limited support for 
dynamic allocation of I/O bandwidth. In addition, VMs also allow 
resource usage to be balanced across physical host boundary by 
migrating application workloads along with their VMs among the 
hosts. 

Application Mobility: As a VM’s CPU, memory, and disk state can 
be represented as data, it can be easily migrated across hosting 
resources by transferring its entire state among the hosts. The 
migration can be done by suspending the VM on the origin host, 
copying its entire state to the destination host, and resuming its 
execution on the destination. Modern VM technologies also allow 
VMs to be migrated while they are continuously executed, across a 
local area network [11][12]. VM migration allows optimization of 

application executions by migrating their VMs to resources that 
would better suit the application requirements. 

Execution Environment Customizability: Hosting 
applications with dedicated VMs enables application-specific 
customization and fine-tuning of execution environments, including 
OSs and libraries, which are encapsulated within the VMs. In this 
way, VMs’ application-specific customization allows the provision 
of application-desired execution environments. In contrast, a 
conventional OS has to support general-purpose usage for a variety 
of applications and is hence difficult to be customized to suit 
different needs.  

Application Code Portability: VMs enable the seamless 
deployment of applications on heterogeneous resources. VMs 
abstract away the heterogeneity of physical resources and provide 
the basis for creating coherent environments for application 
executions. For example, a Linux application that requires a certain 
version of LibC can be easily deployed along with its VM even if 
the host OS is not Linux or has a different version of the library; 
similarly, an application binary compiled for a 64-bit system can 
also be transparently deployed along with its VM on a 32-bit host 
without any modifications. 

3.2 Large-scale Computing on Virtualized Systems 
In this paper, we use VMs as new building blocks for large-scale 
computing systems. For the application developers and users, the 
proposed system will enable them to conveniently deploy their 
applications on large numbers of existing resources and conduct 
massively parallel computing. For the resource owners, this system 
will also significantly improve the utilization and investment of their 
resources, while they are less prone to potential security issues. 

Hosting large-scale applications on virtualized systems greatly 
facilitates the deployment of applications and enables them to 
conveniently leverage the aggregated resources. The enabling 
process will be as simple as installing it on a single computer. The 
application user will be given a plain VM (with the basic OS and 
libraries) to install the application along with the necessary special 
libraries and tools. Afterwards, the user submits this customized VM 
and the enabling of the application is completed. The management 
system will be responsible to create many instances of this VM on 
the hosting resources to start computing with the desired scale. The 
VMs will be instantiated on the hosting resources on demand, 
instead of being statically deployed, in order to support efficient 
resource multiplexing for dynamic application workloads. A 
computing session will be started with the instantiations of VMs to 
host the application’s parallel processes, and it will be ended with 
the termination and cleanup of the instantiated VMs. 

Despite all the benefits of resource virtualization for realizing large-
scale resources, there are a number of challenging issues that still 
need to be addressed. For example, because VMM introduces an 
additional layer of software underneath conventional OSs, VM-
based resource sharing generally has more overhead than OS-based 
resource sharing. Nonetheless, as VM technologies rapidly mature, 
their efficiency is also quickly improving. Modern VM technologies 
have demonstrated that their overhead is considerably small, 
particularly for CPU intensive workloads [3][5]. Being an active 
research field, substantial work is undergoing in both academia and 
industry to enhance various aspects of system virtualization. In 
particular, the emerging hardware CPU extensions (e.g., Intel VT 
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and AMD-V) are providing important support for CPU, memory, 
and I/O virtualization, and they have the potential to further improve 
the efficiency of system VMs. 

4. EXPERIMENTAL ANALASIS 
4.1 Setup 
The setup established for our tests consisted of more than 100 VMs 
hosted on three set of physical resources distributed across three 
buildings in two campuses of FIU. 

The first set of VMs (GCB-VM) is hosted on the compute cluster 
named GCB. It consists of 8 IBM nodes where each one has an Intel 
Pentium-4 3GHz CPU with hyper-threading and 1GB RAM, and 
runs CentOS 4.4 with kernel 2.6.9.  

The second set of VMs (MIND-VM) is hosted on the compute 
cluster named MIND. It has 16 Dell PowerEdge 1850 server nodes, 
where each node has a Dual Intel Xeon 3.6GHz CPUs with 
hyperthreading and 2 GB RAM, and runs RHEL 4 with kernel 2.6.9. 

The third set of VMs (CS-VM) is hosted on several physical servers 
in the Computer Science data center, including five Dell 2950 
servers with dual quad-cores and 16 GB RAM per node, one Dell 
2950 server with dual quad-cores and 32 GB RAM, four Dell R900 
servers with four quad-cores and 128 GB RAM per node, and two 
Dell 2900 servers with dual quad-cores and 32 GB RAM per node.  

For each of the above three set of resources, VMs are started from 
independent images stored on an NFS server running on one of their 
physical servers; an additional VM is also used to run the NFS 
server for each set of the VMs and to provide shared access to the 
application binaries and input/output data. Parallel applications are 
executed on the VMs with one parallel process per VM. 

CS-VM and GCB-VM are located at different buildings of the FIU 
main campus, and the network latency between them is 1.625ms. 
MIND-VM is located at a different campus and its network latency 
to CS-VM and GCB-VM is 1.219ms and 1.733ms, respectively.  

GCB-VM and MIND-VM are virtualized with VMware Server 
1.0.8, whereas the CS-VM includes 111 VMs virtualized with Xen 
3.0.0 and 16 VMs based on VMware Server 1.0.8. Every VM is 
configured with one CPU, 1GB RAM, and 4GB of disk. The VMs 
from CS-VM run paravirtualized UBUNTU Linux with 2.6.18 
kernel or native UBUNTU with 2.6.15 kernel. The VMs on GCB 
and MIND run UBUNTU with 2.6.27 kernel. 

4.2 Benchmarks 
When running WRF, all the participating processes communicate to 
each other to exchange messages in a many-to-many communication 
scheme. For this reason the communication cost is a key factor in 
the WRF performance. Thus, WRF is considered a tightly coupled 
communication application. Therefore, the type of network 
connection from the infrastructure WRF is running becomes crucial 
and can determine the difference between a good performance or a 
bad one. 

In contrast, the mpiBLAST while is highly data-intensive, at the 
same time,  is an embarrassingly parallel application. Its parallel 
processes work in a typical master-worker manner. The master is 
responsible for job scheduling and result collection and the parallel 
search is done by the workers. Upon startup, the query sequences 
are first broadcasted to each worker. Workers then send a request to 

master for assignment of fragment. Fragments are assigned to 
different workers until one of the workers completes the search on 
that fragment and returns the result. Thus, one fragment may be 
assigned to more than one worker. However, the master keeps track 
of the fragments that a worker has on its local storage. The principle 
strategy for master to make a decision on assignment is that the 
worker would be given the fragment already on its local, if not, the 
fragment that existing on the smallest number of other workers. In 
this way, the worker could request for what it had to avoid get the 
same fragment in searching by other workers. The search process 
completes until all the fragments have been searched by workers.  

4.3 WRF Experiments 
The first group of experiments considers WRF with GridMPI as the 
MPI implementation. GridMPI [21] is an implementation of the 
MPI standard designed for high performance computing in the Grid. 
It establishes a synthesized computer cluster by binding multiple 
cluster computers distributed across different domains. Since 
GridMPI does not incur much overhead compared to MPICH, it was 
used for WRF executions on both single-domain and cross-domain 
resources. The GridMPI version considered is 2.1.1.  

All runs of WRF were done three times per configuration and at the 
end, the average of these three was considered. The standard 
deviation found was approximately 5%. Our experiments were 
performed in three stages:  

• Small-scale Tests: Comparison of WRF execution times from 
runs on physical/ virtual resources from GCB/ MIND.  

• Large-scale Single-domain Tests: Analyze WRF performance on 
a large number of resources from CS-VM.  

• Large-scale Cross-domain Tests: Analyze WRF performance on 
a large number of resources aggregated across GCB-VM, MIND-
VM, and CS-VM. 

Small-scale Tests: The first experiment was conducted both on 
the native physical clusters and on the VM-based clusters from GCB 
and MIND. Three different configurations were used for 
performance comparisons between the  physical and virtual 
computing systems. The first one involved the executions on GCB 
resources only (GCB-local-physical vs. GCB-local-VM); the second 
one on MIND resources only (MIND-local-physical vs. MIND-

local-VM), and finally on both GCB and MIND resources (GCB-

MIND-physical vs. GCB-MIND-VM). For all these tests, at most one 
parallel process was assigned per single CPU core or thread. 

From the results on Figure 1, we can see that the overhead of 
utilizing VMs instead of physical ones is not significant, ranging 
from 9.2% to 58%. However, because of WRF’s communication 
scheme being tightly-coupled, the overhead of network 
virtualization is expected to have a considerable effect. In addition, 
when comparing the results from different number of VMs, it is 
evident that there is always a considerable speedup as more 
resources become available although the speedup drops after more 
than 8 processes are utilized. We believe the reason for this is due to 
the relatively small input data set size used by WRF in this set of 
experiments. Finally, when executing WRF across two distributed 
clusters, its performance drops significantly due to the heavy inter-
process communication over the slower network. Nonetheless, the 
performance on the VMs still closely follows that of the physical 
ones [20]. These observations confirm that it is feasible to build a 
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large virtualized computing system and to deliver good performance 
to parallel applications. 

 

 

Figure 1- Local vs Distributed execution times for WRF  

 

Large-scale Single-domain Tests: The second experiment 
involved running WRF on a large number of nodes from the CS-
VM. This experiment, as well as the following one, considers a 
larger data set as the input for WRF as more resources are available 
for a larger-scale experiment. 

Figure 2 shows the runtime of WRF as the number of VMs 
increases from 2 to 128. It is evident that the performance of WRF 
improves as more resources become available for its parallel 
execution (Note: the Y axis is on log2 scale). However, the speedup 
drops significantly as the number of VMs reaches beyond 32. The 
reason for this is that at this point the inter-communication overhead 
prevails over the computation time at each VM. The overhead from 
network I/O virtualization further aggravates the performance of 
WRF when a large number of VMs are involved. Furthermore, even 
though the data set considered in this experiment is larger than the 
one used in the previous experiments having an even larger data set 
may still show an improvement in the speedup when more than 32 
VMs are utilized in the parallel execution of WRF. 

As a reference, we can see our previous results obtained by Javier 
Delgado et al. [20] on the MareNostrum supercomputer from the 
Barcelona Supercomputing Center. The supercomputer consists of 
2,560 JS21 blade computing nodes, each with 2 dual-core IBM 64-
bit PowerPC 970MP processors running at 2.3 GHz for 10,240 
CPUs in total and 20 TB of memory. The results from parallel 
executions of WRF with the same input data set on MareNostrum 
show a similar trend for speedup – it stops scaling beyond 32 nodes.  

Large-scale Cross-domain Tests: The third experiment 
executes WRF across all the resources from GCB-VM, MIND-VM, 
and CS-VM with 8, 32, and 128 VMs, respectively. In this 
experiment, one VM per CPU core is enforced and thus GCB hosts 
only 8 VMs. WRF was executed with 32, 64, and 128 VMs 
respectively distributed in the three set of resources as follows: 

• 32 VMs: 8 GCB-VM, 16 MIND-VM, 8 CS-VM 

• 64 VMs: 8 GCB-VM, 32 MIND-VM, 24 CS-VM 

• 128 VMs: 8 GCB-VM, 32 MIND-VM, 88 CS-VM 

 

 

Figure 2 – Runtime of WRF on CS-local-VM vs Inter-VM-
Clusters 

The results on Figure 2 (see Inter-VM-Clusters) show that the 
execution times for WRF in this experiment are much larger than 
those in the previous single-domain experiment. This can be largely 
attributed to the fact that in this case we are dealing with much 
higher communication latencies across domains. 

We can also observe that as more VMs (cores) are added, the 
performance degrades since the inter-communication increases and 
again, similar to the Large-scale Single-domain Tests, the 
computation time at each VM is not significant compared to the 

inter-communication overhead. 

4.4 mpiBLAST Experiments 
For the second group of experiments, we deployed mpiBLAST on 
virtual machine systems. We used MPICH2 for the MPI 
implementation and mpiBLAST 1.5-pio for the application. 
Although this version of mpiBLAST has some optimization based 
on parallel I/O, we didn’t utilize this feature because the database to 
be searched was not on a parallel file system. 

Our experiment was benchmarked on the nucleotide sequence 
database nt, which is frequently used by bioinformatics researchers. 
The size of the database is 8.4 GB after formatted and the size of the 
query which consists of 15 sequences is fixed at 10K. The result of 
the query is a file that is approximately 3MB.  

We ran the application with different number of nodes to evaluate 
the scalability of mpiBLAST hosted on a virtualized infrastructure. 
Given p nodes for each run, the number of processes was configured 
as p+1. The nt database was statically partitioned into 127 fragments 
to have each worker query one fragment when 128 VM nodes were 
used.  

Figure 3 shows the performance measurements of mpiBLAST on 
the CS-VM cluster. Database fragments were distributed among the 
workers by the first execution. The total execution time can be 
decomposed to three major components including the time spent on 
fragments copying, searching and result merging. For the first run, 
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the execution time ranged from 1200 to 7600 seconds, dominated by 
the copying time. We collected the total execution time of the 3 best 
runs with a different number of VM nodes. It costs over 1 hour for 2 
nodes (1 worker and 1 master), whereas less than 30 seconds for 128 
nodes (1 master and 127 workers). MpiBLAST achieved a super-
linear speedup on the total execution time starting from the 8-node 
run compared with the base case, which consists of just two nodes. 
This is because, as more VMs are involved in the parallel 
computing, the aggregated memory capacity from them grows, 
enabling more fragments to be fit in the memory with less disk 
access overhead. However, the performance dropped at the point of 
128-node, which was expected to have the best speedup. The reason 
for this is that the non-searching time, such as the overhead of inter-
communication between VM nodes, became dominant over the 
entire execution. Figure 4 shows the average search time for 8, 32 
and 128 nodes. Excluding the non-searching overheard, the 
performance for node 128 can achieve a linear speedup compared 
with the base case of running on 8-node. 

 

Figure 3 – mpiBLAST on CS-VM 

 

Figure 4 – Average Search Time 

5. DISCUSSION 
Based on the results from both WRF and mpiBLAST, two 
representative MPI applications with distinct characteristics, this 
section offers a further discussion on the feasibility and challenges 
of VM-based large-scale computing systems. First of all, we could 
realize that the scalability for VM had the same trend as the one for 
physical ones. By analyzing WRF, we could see that there is 
speedup after adding more VMs, even though there is an overhead 
caused by the use of virtual resources over physical ones. This 
proves that the overhead from virtualization is acceptable to 
building a large-scale computing system and it is justifiable as the 

use of virtualization enables us to more effectively harness the 
available resources and aggregate them for computing needs. 

The results from WRF also show that resources cannot be blindly 
selected regardless of the parallel application’s characteristics. For 
tightly-coupled communication applications, the cost from 
communication can be prohibitive as the computing system scales 
across domains, since in such situation there is an additional cost of 
going across domains over a much slower network (virtual 
network). We could see that as we include more than 32 VMs from 
three different domains the performance did not obtain any speedup, 
which mainly was caused because of a higher communication delay 
and the computation time was overwhelmed by the communication 
time. 

As we have observed, WRF’s limitation for scaling up is due to its 
tightly coupled communication scheme; however, when dealing 
with loosely coupled applications, the scalability on the number of 
VMs can provide a much more meaningful performance 
improvement. For example, mpiBLAST as discussed in Section 3.3 
presents a speedup even larger than the linear one. The reason for 
this is because the scaling out on the number of VMs offers a higher 
level of parallel computation and the communication among them is 
not significant. Nevertheless, as demonstrated by the execution time 
of the first mpiBLAST run, for data-intensive applications, the 
distribution of data set to a large number of processes running on 
VMs can still be a bottleneck of the system’s scalability. 

Additionally, it is important to point out that our results for WRF on 
a VM infrastructure present a similar behavior to the ones obtained 
when deployed on a physical resource [20].  

6. RELATED WORK 
Different types of large-scale distributed computing systems have 
been developed over the last decade, including typical volunteer 
computing systems [1][2] and grid computing systems [3]. Common 
to these systems are applications that are tightly coupled with some 
underlying middleware frameworks and are directly executed on the 
hosting resources. In comparison, this paper considers building 
large-scale computing systems based on VM-based resource 
virtualization, which offers highly flexible, customizable resource 
sharing with strong security and isolation. 

As the deployment of virtualization technologies become pervasive, 
VM-based computing systems have been considered at different 
scales, from virtualized data centers [16] to VM-based grid 
computing [17], VM-based high-performance computing [18], and 
VM-based cloud computing systems [18]. The key differentiator of 
this paper is in its focus on large-scale virtualized computing 
systems for massively parallel applications. 

7. CONCLUSIONS AND FUTURE WORK 
Across this paper, we have been able to observe how virtualizing 
resources allowed us to scale out on a large set of resources for two 
parallel applications which require homogenous resources. 
Nevertheless, the performance gain varied among both applications, 
mainly because of their communication requirements.  

For tightly coupled communication applications such as WRF, we 
can see that the cost of the communication was key in the execution 
time. Therefore, even though, the overhead of using VMs locally did 
not show much performance loss, when going across domains, the 

40



communication cost became critical. Similarly when scaling out 
with a large number of VMs, the intercommunication increased and 
affected the performance dramatically. 

On the other hand, for loosely coupled communication applications 
such as mpiBLAST, we can always see a considerable speedup as 
here what prevails is the computation gained by an increased 
parallelism over the communication overhead. Nevertheless, if the 
dataset is relatively small and the number of VMs utilized is too 
large, then the parallelism can be overwhelmed by the 
communication. 

Based on the findings of this paper, we will address the research 
challenges of building large-scale virtualized computing systems 
from the following three aspects: data management for efficient VM 
images and application data provisioning; resource management for 
precise resource control and optimized resource allocation; and job 
management for scalable application executions. At the same time, a 
larger input data size will be created for these experiments. Finally, 
we are planning on taking into consideration communication issues 
(e.g. network latency) in Javier Delgado’s model.  
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