
Experimental Study of Large-scale Computing
on Virtualized Resources

Juan C. Martinez, Lixi Wang, Ming Zhao, and S. Masoud Sadjadi
School of Computing and Information Sciences, Florida International University

{jmart054, lwang007, zhaom, sadjadi}@cs.fiu.edu

ABSTRACT
Parallel applications have a pressing need for the utilization of more
and more resources to meet users’ performance expectations.
Unfortunately, these resources are not necessarily available within
one single domain. Grid computing provides a solution for scaling
out from a single domain; however, it also brings another problem
for some applications: resource heterogeneity. Since some
applications require having homogeneous resources for their
execution, virtualizing the resources is a noble and viable solution.

In this paper, we present two parallel applications, namely WRF and
mpiBLAST and report the results of different runs scaling them out
from 2 to 128 virtual nodes. Later, we analyze the effects of scaling
out based on the application’s communication behavior.

Categories and Subject Descriptors
D.1.3 Concurrent Programming: Distributed programming;

Parallel programming.

General Terms
Experimentation, Performance

Keywords
Grid Computing, Performance Evaluation, Virtualization

1. INTRODUCTION
There are growing needs for large-scale computing, motivated by
the emergence of grand challenge applications in science and
engineering, as well as the massive growth of data available for
analysis. The increasing adoption of programming paradigms such
as the classic MPI and the recently popular Map-Reduce has
provided simple yet powerful ways of massively parallel problem
solving, generating more interests in large-scale computing as well
as the need for systems that can support such computing.

Different types of large-scale distributed computing systems have
been developed over the last decade. At one end of the spectrum are
volunteer computing systems (e.g., [1][2]), which are an aggregation
of a large number of unmanaged resources contributed by individual
resource owners. At the other end are grid computing systems (e.g.,
[3]), which are built upon managed resources shared across
organizations. Common to these systems are applications that are
tightly coupled with their underlying middleware frameworks and

they are directly executed on the hosting resources. There are certain
limitations to such approaches. From the perspective of application
users, existing applications have to be reengineered to use the APIs
provided by the middleware in order to enable them on those
computing systems so that they can make use of the available
resources. In addition, these modified applications have to rely on
the mechanisms provided by the host operating systems (OSs) to
protect their execution from the other tasks that are sharing the same
resources. From the perspective of resource owners, these
approaches have only limited control over applications’ resource
usage and they also have to rely on the available OS mechanisms to
protect the security of their resources.

This paper considers a new approach to building large-scale
computing systems by virtualizing existing resources using system

virtual machine (VM) technologies (e.g., VMware [3][4] and Xen
[5]) to support flexible resource sharing with strong isolation and
convenient application deployment on customized execution
environments. VMs are becoming pervasively used, driven by the
fast maturation and wide availability of VM products, as well as the
rapid growth of computing power of modern computers. Their
deployments can be found from enterprise datacenters for resource
consolidation to personal computers for multi-OS hosting. In our
proposed system, VMs can be dynamically deployed to facilitate the
consolidation of applications and co-allocation of the available
resources of existing computers both scattered across organizations
and owned by individuals. As a result, resource-demanding
applications can be distributed and executed along with the VMs in
a massively parallel fashion.

In order to investigate the feasibility of building a large-scale
virtualized computing system and to identify the potential research
challenges, we have developed a large VM-based system consisting
of more than 100 VMs hosted on 30+ shared existing physical
servers at FIU. Two representative massively parallel applications
are tested on this environment and an analysis on how the
performance is affected is presented and analyzed accordingly
taking into consideration the nature of each of application.

The rest of this paper is organized as follows. Section 2 introduces
two representative MPI applications with different communication
behavior. Section 3 discusses how we used virtual machines in our
work. Section 4 presents the experiments. Section 5 offers a more
in-depth discussion. Section 6 examines the related work. Finally,
Section 7 concludes the paper.

2. Massively Parallel Applications
Massively parallel applications are typically highly resource-
demanding and require large-scale resources to meet the expectation
of their users. For this part of our discussion, without losing the
generality, we focus on the Weather Research and Forecasting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VTDC’09, June 15, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-580-2/09/06...$5.00.

35

(WRF) code [6] and mpiBLAST as two representative applications
for high-performance computing: the former requires frequent
communication and there are heavy data dependencies among its
worker nodes (called tightly-coupled communication application),
and the latter requires no communication among the worker nodes
with little data dependency between the head and the worker nodes
(called loosely-coupled communication application).

2.1 WRF
WRF is the latest numerical model developed by the National
Center for Atmospheric Research (NCAR) for both operational
forecasting and atmospheric research. A measure of its success is
that WRF is being rapidly adopted by many meteorological services
and researchers worldwide. Also, WRF was shown to significantly
improve forecasts of hurricane structure and rainfall during the
Florida Hurricanes of 2004 [7].

The impact of hurricanes is so devastating throughout different
levels of society that there is a pressing need to provide a range of
users with accurate and timely information that can enable effective
planning for and response to potential hurricane landfalls. The
current version of WRF has been designed to run either on a single
machine (with one or multiple processors) or on a cluster of
homogeneous nodes connected through a high-speed local area
network. It has not been designed to scale on resources of
heterogeneous nature that may become available during the course
of a simulation process. However, the high resource requirements of
WRF for fine-resolution forecasting (1km resolution forecast)
demand a large number of computing nodes with substantial
memory and disk storage. Currently, few organizations (even
national agencies) have either the required computational power or
bandwidth to produce high resolution forecasts and deliver them to
emergency management, businesses, and the public. Therefore, there
is a pressing need for large-scale resource enablement of the WRF
code so that it can utilize resources available from willing
organizations and individuals who want to contribute.

WRF is written in FORTRAN and C and is a typical MPI
application. Like any other MPI application, it is very dependent on
the architecture of the machine, the OS, and the libraries (including
the MPI libraries) against which it is compiled. In addition, WRF is
very sensitive to the homogeneity of the computing nodes of the
cluster on which it is deployed. To enable WRF to execute on the
large-computing resources provided by volunteer and grid
computing systems, as discussed before, we need to modify the
WRF code to interact with the API of their underlying middleware
and compile it for all the possible heterogeneous resources.
Unfortunately, even after overcoming this tedious and error prone
task, WRF will not run properly on such environments as the
heterogeneity in the hardware architectures of potential available
resources will skew the result (e.g., some of the resources may be 64
bit while others are 32 bit) and the WRF performance may be
degraded significantly too. In this paper, we use resource sharing via
virtual machines (VMs) to provide a solution to such problems.

2.2 mpiBLAST
Another typical example from the biology area that has benefited
from massively parallel computing is sequence database search.
DNA (peptide) and amino-acid (nucleotide) sequences have been
used to identify organisms or species. In bioinformatics research, in
order to identify a newly discovered sequence, the key approach is

to search for similarities between a query sequence and existing
sequences against biology databases. The BLAST (Basic Local
Alignment Search Tool) is a popular tool providing basic algorithms
for sequence database search. Traditional implementations of
BLAST such as NCBI-BLAST have been proven to be too slow and
as a result failed to catch up with the speed of database growing.

mpiBLAST is an open-source parallel implementation of BLAST
based on MPI [14]. One of the characteristics of mpiBLAST is
database segmentation. By statically dividing large sequence
database into small fragments and distributing those fragments to the
nodes in a cluster, mpiBLAST enables simultaneous query over the
set of fragments. MpiBLAST wraps the standard NCBI [15]
formatting function to format raw sequence database into fragments
and put them in a shared storage space. Extra disk I/O, from which
traditional BLAST suffers when trying to fit the entire database into
memory, is also avoided by the aggregate memory available from all
the nodes in the cluster.

3. Using Virtual Machines

3.1 Resource Sharing via Virtual Machines
VM technologies provide a powerful layer of abstraction for
resource sharing. The VMs considered in this paper are system-level
VMs, which are based on the virtualization of entire physical hosts’
resources, including CPU, memory, and I/O devices, presenting
virtual resources to the guest operating systems and applications.
Although the techniques proposed in this paper can also be applied
to some of the other types of virtualization (e.g., OS-extension based
VMs [7][8]), those are not the focus of this paper. System VMs
include the following two types: full-virtualized VMs and para-
virtualized VMs. Full-virtualized VMs (e.g., VMware ESX [4])
present the same hardware interface to guest OSs as the physical
machines and thus support unmodified OSs in the VMs. Para-
virtualized VMs (e.g., Xen [5]) present a modified hardware
interface which is optimized to reduce the overhead of
virtualization, but they require the guests OSs to be modified too in
order to accommodate these changes.

System virtualization is implemented by the layer of software called
virtual machine monitor (VMM, a.k.a. hypervisor). VMM can be
either hosted on an existing OS or run directly on top of the
hardware. Hosted VMs leverage the native OS to access resources
and thus typically incurs more overhead, but they can be
conveniently deployed on existing resources and transparently work
with their OS installations. Examples include VMware Server on
Windows and Linux [3], Parallels Desktop on Mac OS [9]). Non-
hosted VMs require existing OSs to be removed so VMM can have
direct control of the resources, but they can typically deliver better
performance compared to hosted VMs. Examples of non-hosted
VM products include Xen [5] and VMware ESX Server [4].
Therefore, non-hosted VMs are gradually gaining dominance in
server virtualization environments, whereas hosted VMs are more
widely used in systems where VMM needs to coexist with
traditional OSs without disrupting the normal operation of those
systems.

The emergence of system VMs is driven by the fast maturation and
wide deployment of virtualization technologies, as well as the rapid
growth of computing power on modern computer systems. On one
hand, VM technologies are already efficient and reliable enough to
host mission-critical applications, and they are widely available for

36

the virtualization of various types of systems. Many VM products
are also free to use, for example, Xen and kVM are released under
GPL free software license, as well as VMware Server and ESXi are
free of charge. On the other hand, the ever increasing computing
power of today’s computers has provided the necessary resources to
host VMs. In particular, multi-core and many-core CPUs are quickly
emerging on not only high-end systems but also consumer products.
VMs are particularly suited to provide space-sharing of resources
for such systems. Driven by the above factors, system VMs are
becoming increasingly more common within enterprises for server
consolidations, as well as by end-users to run different OSs and
applications on the same machine.

This paper considers the use of dedicated VMs to host different
application instances and allow them to share the underlying
physical resources. The goal is similar to the resource sharing
provided by conventional multi-user, multi-programming OSs, but
the multiplexing of applications to resources is provided at a lower
level of the system abstraction. It thereby has the following
advantages in supporting resource sharing.

Application and Resource Security: Because system
virtualization multiplexes resources below conventional OSs, it can
provide strong isolation between an application in a VM and other
tasks that share the same host. For a malicious piece of code to
comprise the resource, it has to break the protection provided by
both the guest OS and VMM layers. It is also well recognized that
because a VMM is a much thinner software layer that a typical OS,
it is much easier to be implemented in a robust way without hidden
security holes. Therefore, VMs can provide stronger security to both
the resources and the tasks that are sharing the resources.

Failure and Performance Isolation: In addition to better
security protection, VMs also provide strong failure isolation. A
catastrophic failure happened inside a VM (e.g., OS crashes or file
system corruptions) will not affect the normal executions of the
other tasks outside of this VM. In terms of performance isolation for
resource sharing applications, research has also shown that hosting
applications with independent VMs can provide very good
performance isolation [5]. In fact, in the presence of a misbehaving
application, system VMs offer much better isolation of interference
compared to OS-level resource sharing approaches [10].

Resource Allocation Flexibility: VMs can be used as resource
containers to allow flexible resource allocation. Current VM
technologies typically allow VMs to be created with desired amount
of resources in terms of CPU numbers, memory size, and disk
capacity. Server-class VM (e.g., VMware ESX Server, Xen)
products also provide fine-grained support for dynamic adjustment
of VMs’ CPU and memory shares as well as limited support for
dynamic allocation of I/O bandwidth. In addition, VMs also allow
resource usage to be balanced across physical host boundary by
migrating application workloads along with their VMs among the
hosts.

Application Mobility: As a VM’s CPU, memory, and disk state can
be represented as data, it can be easily migrated across hosting
resources by transferring its entire state among the hosts. The
migration can be done by suspending the VM on the origin host,
copying its entire state to the destination host, and resuming its
execution on the destination. Modern VM technologies also allow
VMs to be migrated while they are continuously executed, across a
local area network [11][12]. VM migration allows optimization of

application executions by migrating their VMs to resources that
would better suit the application requirements.

Execution Environment Customizability: Hosting
applications with dedicated VMs enables application-specific
customization and fine-tuning of execution environments, including
OSs and libraries, which are encapsulated within the VMs. In this
way, VMs’ application-specific customization allows the provision
of application-desired execution environments. In contrast, a
conventional OS has to support general-purpose usage for a variety
of applications and is hence difficult to be customized to suit
different needs.

Application Code Portability: VMs enable the seamless
deployment of applications on heterogeneous resources. VMs
abstract away the heterogeneity of physical resources and provide
the basis for creating coherent environments for application
executions. For example, a Linux application that requires a certain
version of LibC can be easily deployed along with its VM even if
the host OS is not Linux or has a different version of the library;
similarly, an application binary compiled for a 64-bit system can
also be transparently deployed along with its VM on a 32-bit host
without any modifications.

3.2 Large-scale Computing on Virtualized Systems
In this paper, we use VMs as new building blocks for large-scale
computing systems. For the application developers and users, the
proposed system will enable them to conveniently deploy their
applications on large numbers of existing resources and conduct
massively parallel computing. For the resource owners, this system
will also significantly improve the utilization and investment of their
resources, while they are less prone to potential security issues.

Hosting large-scale applications on virtualized systems greatly
facilitates the deployment of applications and enables them to
conveniently leverage the aggregated resources. The enabling
process will be as simple as installing it on a single computer. The
application user will be given a plain VM (with the basic OS and
libraries) to install the application along with the necessary special
libraries and tools. Afterwards, the user submits this customized VM
and the enabling of the application is completed. The management
system will be responsible to create many instances of this VM on
the hosting resources to start computing with the desired scale. The
VMs will be instantiated on the hosting resources on demand,
instead of being statically deployed, in order to support efficient
resource multiplexing for dynamic application workloads. A
computing session will be started with the instantiations of VMs to
host the application’s parallel processes, and it will be ended with
the termination and cleanup of the instantiated VMs.

Despite all the benefits of resource virtualization for realizing large-
scale resources, there are a number of challenging issues that still
need to be addressed. For example, because VMM introduces an
additional layer of software underneath conventional OSs, VM-
based resource sharing generally has more overhead than OS-based
resource sharing. Nonetheless, as VM technologies rapidly mature,
their efficiency is also quickly improving. Modern VM technologies
have demonstrated that their overhead is considerably small,
particularly for CPU intensive workloads [3][5]. Being an active
research field, substantial work is undergoing in both academia and
industry to enhance various aspects of system virtualization. In
particular, the emerging hardware CPU extensions (e.g., Intel VT

37

and AMD-V) are providing important support for CPU, memory,
and I/O virtualization, and they have the potential to further improve
the efficiency of system VMs.

4. EXPERIMENTAL ANALASIS
4.1 Setup
The setup established for our tests consisted of more than 100 VMs
hosted on three set of physical resources distributed across three
buildings in two campuses of FIU.

The first set of VMs (GCB-VM) is hosted on the compute cluster
named GCB. It consists of 8 IBM nodes where each one has an Intel
Pentium-4 3GHz CPU with hyper-threading and 1GB RAM, and
runs CentOS 4.4 with kernel 2.6.9.

The second set of VMs (MIND-VM) is hosted on the compute
cluster named MIND. It has 16 Dell PowerEdge 1850 server nodes,
where each node has a Dual Intel Xeon 3.6GHz CPUs with
hyperthreading and 2 GB RAM, and runs RHEL 4 with kernel 2.6.9.

The third set of VMs (CS-VM) is hosted on several physical servers
in the Computer Science data center, including five Dell 2950
servers with dual quad-cores and 16 GB RAM per node, one Dell
2950 server with dual quad-cores and 32 GB RAM, four Dell R900
servers with four quad-cores and 128 GB RAM per node, and two
Dell 2900 servers with dual quad-cores and 32 GB RAM per node.

For each of the above three set of resources, VMs are started from
independent images stored on an NFS server running on one of their
physical servers; an additional VM is also used to run the NFS
server for each set of the VMs and to provide shared access to the
application binaries and input/output data. Parallel applications are
executed on the VMs with one parallel process per VM.

CS-VM and GCB-VM are located at different buildings of the FIU
main campus, and the network latency between them is 1.625ms.
MIND-VM is located at a different campus and its network latency
to CS-VM and GCB-VM is 1.219ms and 1.733ms, respectively.

GCB-VM and MIND-VM are virtualized with VMware Server
1.0.8, whereas the CS-VM includes 111 VMs virtualized with Xen
3.0.0 and 16 VMs based on VMware Server 1.0.8. Every VM is
configured with one CPU, 1GB RAM, and 4GB of disk. The VMs
from CS-VM run paravirtualized UBUNTU Linux with 2.6.18
kernel or native UBUNTU with 2.6.15 kernel. The VMs on GCB
and MIND run UBUNTU with 2.6.27 kernel.

4.2 Benchmarks
When running WRF, all the participating processes communicate to
each other to exchange messages in a many-to-many communication
scheme. For this reason the communication cost is a key factor in
the WRF performance. Thus, WRF is considered a tightly coupled
communication application. Therefore, the type of network
connection from the infrastructure WRF is running becomes crucial
and can determine the difference between a good performance or a
bad one.

In contrast, the mpiBLAST while is highly data-intensive, at the
same time, is an embarrassingly parallel application. Its parallel
processes work in a typical master-worker manner. The master is
responsible for job scheduling and result collection and the parallel
search is done by the workers. Upon startup, the query sequences
are first broadcasted to each worker. Workers then send a request to

master for assignment of fragment. Fragments are assigned to
different workers until one of the workers completes the search on
that fragment and returns the result. Thus, one fragment may be
assigned to more than one worker. However, the master keeps track
of the fragments that a worker has on its local storage. The principle
strategy for master to make a decision on assignment is that the
worker would be given the fragment already on its local, if not, the
fragment that existing on the smallest number of other workers. In
this way, the worker could request for what it had to avoid get the
same fragment in searching by other workers. The search process
completes until all the fragments have been searched by workers.

4.3 WRF Experiments
The first group of experiments considers WRF with GridMPI as the
MPI implementation. GridMPI [21] is an implementation of the
MPI standard designed for high performance computing in the Grid.
It establishes a synthesized computer cluster by binding multiple
cluster computers distributed across different domains. Since
GridMPI does not incur much overhead compared to MPICH, it was
used for WRF executions on both single-domain and cross-domain
resources. The GridMPI version considered is 2.1.1.

All runs of WRF were done three times per configuration and at the
end, the average of these three was considered. The standard
deviation found was approximately 5%. Our experiments were
performed in three stages:

• Small-scale Tests: Comparison of WRF execution times from
runs on physical/ virtual resources from GCB/ MIND.

• Large-scale Single-domain Tests: Analyze WRF performance on
a large number of resources from CS-VM.

• Large-scale Cross-domain Tests: Analyze WRF performance on
a large number of resources aggregated across GCB-VM, MIND-
VM, and CS-VM.

Small-scale Tests: The first experiment was conducted both on
the native physical clusters and on the VM-based clusters from GCB
and MIND. Three different configurations were used for
performance comparisons between the physical and virtual
computing systems. The first one involved the executions on GCB
resources only (GCB-local-physical vs. GCB-local-VM); the second
one on MIND resources only (MIND-local-physical vs. MIND-

local-VM), and finally on both GCB and MIND resources (GCB-

MIND-physical vs. GCB-MIND-VM). For all these tests, at most one
parallel process was assigned per single CPU core or thread.

From the results on Figure 1, we can see that the overhead of
utilizing VMs instead of physical ones is not significant, ranging
from 9.2% to 58%. However, because of WRF’s communication
scheme being tightly-coupled, the overhead of network
virtualization is expected to have a considerable effect. In addition,
when comparing the results from different number of VMs, it is
evident that there is always a considerable speedup as more
resources become available although the speedup drops after more
than 8 processes are utilized. We believe the reason for this is due to
the relatively small input data set size used by WRF in this set of
experiments. Finally, when executing WRF across two distributed
clusters, its performance drops significantly due to the heavy inter-
process communication over the slower network. Nonetheless, the
performance on the VMs still closely follows that of the physical
ones [20]. These observations confirm that it is feasible to build a

38

large virtualized computing system and to deliver good performance
to parallel applications.

Figure 1- Local vs Distributed execution times for WRF

Large-scale Single-domain Tests: The second experiment
involved running WRF on a large number of nodes from the CS-
VM. This experiment, as well as the following one, considers a
larger data set as the input for WRF as more resources are available
for a larger-scale experiment.

Figure 2 shows the runtime of WRF as the number of VMs
increases from 2 to 128. It is evident that the performance of WRF
improves as more resources become available for its parallel
execution (Note: the Y axis is on log2 scale). However, the speedup
drops significantly as the number of VMs reaches beyond 32. The
reason for this is that at this point the inter-communication overhead
prevails over the computation time at each VM. The overhead from
network I/O virtualization further aggravates the performance of
WRF when a large number of VMs are involved. Furthermore, even
though the data set considered in this experiment is larger than the
one used in the previous experiments having an even larger data set
may still show an improvement in the speedup when more than 32
VMs are utilized in the parallel execution of WRF.

As a reference, we can see our previous results obtained by Javier
Delgado et al. [20] on the MareNostrum supercomputer from the
Barcelona Supercomputing Center. The supercomputer consists of
2,560 JS21 blade computing nodes, each with 2 dual-core IBM 64-
bit PowerPC 970MP processors running at 2.3 GHz for 10,240
CPUs in total and 20 TB of memory. The results from parallel
executions of WRF with the same input data set on MareNostrum
show a similar trend for speedup – it stops scaling beyond 32 nodes.

Large-scale Cross-domain Tests: The third experiment
executes WRF across all the resources from GCB-VM, MIND-VM,
and CS-VM with 8, 32, and 128 VMs, respectively. In this
experiment, one VM per CPU core is enforced and thus GCB hosts
only 8 VMs. WRF was executed with 32, 64, and 128 VMs
respectively distributed in the three set of resources as follows:

• 32 VMs: 8 GCB-VM, 16 MIND-VM, 8 CS-VM

• 64 VMs: 8 GCB-VM, 32 MIND-VM, 24 CS-VM

• 128 VMs: 8 GCB-VM, 32 MIND-VM, 88 CS-VM

Figure 2 – Runtime of WRF on CS-local-VM vs Inter-VM-
Clusters

The results on Figure 2 (see Inter-VM-Clusters) show that the
execution times for WRF in this experiment are much larger than
those in the previous single-domain experiment. This can be largely
attributed to the fact that in this case we are dealing with much
higher communication latencies across domains.

We can also observe that as more VMs (cores) are added, the
performance degrades since the inter-communication increases and
again, similar to the Large-scale Single-domain Tests, the
computation time at each VM is not significant compared to the

inter-communication overhead.

4.4 mpiBLAST Experiments
For the second group of experiments, we deployed mpiBLAST on
virtual machine systems. We used MPICH2 for the MPI
implementation and mpiBLAST 1.5-pio for the application.
Although this version of mpiBLAST has some optimization based
on parallel I/O, we didn’t utilize this feature because the database to
be searched was not on a parallel file system.

Our experiment was benchmarked on the nucleotide sequence
database nt, which is frequently used by bioinformatics researchers.
The size of the database is 8.4 GB after formatted and the size of the
query which consists of 15 sequences is fixed at 10K. The result of
the query is a file that is approximately 3MB.

We ran the application with different number of nodes to evaluate
the scalability of mpiBLAST hosted on a virtualized infrastructure.
Given p nodes for each run, the number of processes was configured
as p+1. The nt database was statically partitioned into 127 fragments
to have each worker query one fragment when 128 VM nodes were
used.

Figure 3 shows the performance measurements of mpiBLAST on
the CS-VM cluster. Database fragments were distributed among the
workers by the first execution. The total execution time can be
decomposed to three major components including the time spent on
fragments copying, searching and result merging. For the first run,

39

the execution time ranged from 1200 to 7600 seconds, dominated by
the copying time. We collected the total execution time of the 3 best
runs with a different number of VM nodes. It costs over 1 hour for 2
nodes (1 worker and 1 master), whereas less than 30 seconds for 128
nodes (1 master and 127 workers). MpiBLAST achieved a super-
linear speedup on the total execution time starting from the 8-node
run compared with the base case, which consists of just two nodes.
This is because, as more VMs are involved in the parallel
computing, the aggregated memory capacity from them grows,
enabling more fragments to be fit in the memory with less disk
access overhead. However, the performance dropped at the point of
128-node, which was expected to have the best speedup. The reason
for this is that the non-searching time, such as the overhead of inter-
communication between VM nodes, became dominant over the
entire execution. Figure 4 shows the average search time for 8, 32
and 128 nodes. Excluding the non-searching overheard, the
performance for node 128 can achieve a linear speedup compared
with the base case of running on 8-node.

Figure 3 – mpiBLAST on CS-VM

Figure 4 – Average Search Time

5. DISCUSSION
Based on the results from both WRF and mpiBLAST, two
representative MPI applications with distinct characteristics, this
section offers a further discussion on the feasibility and challenges
of VM-based large-scale computing systems. First of all, we could
realize that the scalability for VM had the same trend as the one for
physical ones. By analyzing WRF, we could see that there is
speedup after adding more VMs, even though there is an overhead
caused by the use of virtual resources over physical ones. This
proves that the overhead from virtualization is acceptable to
building a large-scale computing system and it is justifiable as the

use of virtualization enables us to more effectively harness the
available resources and aggregate them for computing needs.

The results from WRF also show that resources cannot be blindly
selected regardless of the parallel application’s characteristics. For
tightly-coupled communication applications, the cost from
communication can be prohibitive as the computing system scales
across domains, since in such situation there is an additional cost of
going across domains over a much slower network (virtual
network). We could see that as we include more than 32 VMs from
three different domains the performance did not obtain any speedup,
which mainly was caused because of a higher communication delay
and the computation time was overwhelmed by the communication
time.

As we have observed, WRF’s limitation for scaling up is due to its
tightly coupled communication scheme; however, when dealing
with loosely coupled applications, the scalability on the number of
VMs can provide a much more meaningful performance
improvement. For example, mpiBLAST as discussed in Section 3.3
presents a speedup even larger than the linear one. The reason for
this is because the scaling out on the number of VMs offers a higher
level of parallel computation and the communication among them is
not significant. Nevertheless, as demonstrated by the execution time
of the first mpiBLAST run, for data-intensive applications, the
distribution of data set to a large number of processes running on
VMs can still be a bottleneck of the system’s scalability.

Additionally, it is important to point out that our results for WRF on
a VM infrastructure present a similar behavior to the ones obtained
when deployed on a physical resource [20].

6. RELATED WORK
Different types of large-scale distributed computing systems have
been developed over the last decade, including typical volunteer
computing systems [1][2] and grid computing systems [3]. Common
to these systems are applications that are tightly coupled with some
underlying middleware frameworks and are directly executed on the
hosting resources. In comparison, this paper considers building
large-scale computing systems based on VM-based resource
virtualization, which offers highly flexible, customizable resource
sharing with strong security and isolation.

As the deployment of virtualization technologies become pervasive,
VM-based computing systems have been considered at different
scales, from virtualized data centers [16] to VM-based grid
computing [17], VM-based high-performance computing [18], and
VM-based cloud computing systems [18]. The key differentiator of
this paper is in its focus on large-scale virtualized computing
systems for massively parallel applications.

7. CONCLUSIONS AND FUTURE WORK
Across this paper, we have been able to observe how virtualizing
resources allowed us to scale out on a large set of resources for two
parallel applications which require homogenous resources.
Nevertheless, the performance gain varied among both applications,
mainly because of their communication requirements.

For tightly coupled communication applications such as WRF, we
can see that the cost of the communication was key in the execution
time. Therefore, even though, the overhead of using VMs locally did
not show much performance loss, when going across domains, the

40

communication cost became critical. Similarly when scaling out
with a large number of VMs, the intercommunication increased and
affected the performance dramatically.

On the other hand, for loosely coupled communication applications
such as mpiBLAST, we can always see a considerable speedup as
here what prevails is the computation gained by an increased
parallelism over the communication overhead. Nevertheless, if the
dataset is relatively small and the number of VMs utilized is too
large, then the parallelism can be overwhelmed by the
communication.

Based on the findings of this paper, we will address the research
challenges of building large-scale virtualized computing systems
from the following three aspects: data management for efficient VM
images and application data provisioning; resource management for
precise resource control and optimized resource allocation; and job
management for scalable application executions. At the same time, a
larger input data size will be created for these experiments. Finally,
we are planning on taking into consideration communication issues
(e.g. network latency) in Javier Delgado’s model.

Acknowledgement: This work was supported in part by IBM and
the National Science Foundation (grants OISE-0730065, OCI-
0636031, HRD-0833093).

REFERENCES
[1] David P. Anderson, et al., “SETI@home: An Experiment in Public-

Resource Computing”, Communications of the ACM, Vol. 45 No. 11,
November 2002, pp. 56-61.

[2] David P. Anderson, “BOINC: A System for Public-Resource
Computing and Storage”, in Proc. 5th IEEE/ACM International
Workshop on Grid Computing, November 2004.

[3] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations”, Int. J. High Perform.
Comput. Appl., vol. 15, pp. 200-222, August 2001. J. Sugerman, G.
Venkitachalam, and B. Lim, “Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor”, in Proc. of 2001
USENIX Annual Technical Conference, June 2001.

[4] Carl A. Waldspurger, “Memory resource management in VMware
ESX server”, Proceedings of the 5th symposium on Operating systems
design and implementation, December 2002.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield. “Xen and the Art of
Virtualization”, in Proc. of the ACM Symposium on Operating
Systems Principles (SOSP), October 2003.

[6] Weather Research & Forecasting Model, http://www.wrf-model.org/

[7] Patrick T. Welsh and Peter Bogenschutz, “Weather Research and
Forecast (WRF) Model: Precipitation Prognostics from the WRF
Model during Recent Tropical Cyclones”, 59th Interdepartmental
Hurricane Conference, March 7-11, 2005 Jacksonville, FL. Linux
Vserver, http://linux-vserver.org/.

[8] OpenVZ, http://wiki.openvz.org/.

[9] Parallels, http:// http://www.parallels.com/.

[10] J. Matthews, et al., “Quantifying the performance isolation properties
of virtualization systems”, in Proceedings of the 2007 workshop on
Experimental computer science, 2007.

[11] VMware VMotion,
http://www.vmware.com/products/vi/vc/vmotion.html.

[12] C. Clark, “Live Migration of Virtual Machines”, in Proc. of the 2nd
conference on Symposium on Networked Systems Design &
Implementation, 2005.

[13] C. P. Sapuntzakis, R. Chandra, B. Pfa_, J. Chow, M. S. Lam, and M.
Rosenblum, “Optimizing the migration of virtual computers”, in Proc.
the 5th Symposium on Operating Systems Design and Implementation,
December 2002.

[14] A. Darling, L. Carey, and W. Feng, “The Design, Implementation, and
Evaluation of mpiBLAST”, 4th International Conference on Linux
Clusters: The HPC Revolution 2003 in conjunction
with ClusterWorld Conference & Expo, June 2003.

[15] NCBI, http://www.ncbi.nlm.nih.gov/

[16] VMware Inc., VMware VirtualCenter Users Manual.

[17] R. Figueiredo, P. Dinda, , and J. Fortes, “A case for grid computing on
virtual machines”, In Proceedings of the 23rd IEEE Conference on
Distributed Computing (ICDCS 2003 (May 2003), pp. 550–559.

[18] W. Huang, et al., “A case for high performance computing with virtual
machines”, Proceedings of the 20th annual international conference on
Supercomputing.

[19] Amazon Elastic Compute Cloud (Amazon EC2),
http://aws.amazon.com/ec2/

[20] Javier Delgado, Marlon Bright, Javier Figueroa, and S. Masoud
Sadjadi. Modeling WRF Execution time on MareNostrum. Technical
Report FIU-SCIS-2009-02-01, Florida International University, Feb.
2009.

[21] William L. George, John G. Hagedorn, Judith E. Devaney,
"IMPI: Making MPI interoperable", Journal of Research of the
National Institute of Standards and Technology 2000.

41

